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Closest 4-Leaf Power is Fixed-Parameter

Tractable ⋆

Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier

Abstract

The NP-complete Closest 4-Leaf Power problem asks, given an undirected
graph, whether it can be modified by at most r edge insertions or deletions such that
it becomes a 4-leaf power. Herein, a 4-leaf power is a graph that can be constructed
by considering an unrooted tree—the 4-leaf root—with leaves one-to-one labeled
by the graph vertices, where we connect two graph vertices by an edge iff their
corresponding leaves are at distance at most 4 in the tree. Complementing previous
work on Closest 2-Leaf Power and Closest 3-Leaf Power, we give the first
algorithmic result for Closest 4-Leaf Power, showing that Closest 4-Leaf
Power is fixed-parameter tractable with respect to the parameter r.

Key words: fixed-parameter tractability, graph algorithm, graph modification,
graph power, leaf power, forbidden subgraph characterization

1 Introduction

Graph powers form a classical concept in graph theory, and the rich literature
dates back to the sixties of the previous century (see [5, Sect. 10.6] and [27] for
surveys). The k-power of an undirected graph G = (V,E) is the undirected
graph Gk = (V,E ′) with (u, v) ∈ E ′ iff there is a path of length at most k
between u and v in G. We say G is the k-root of Gk. It is NP-complete to
decide whether a given graph is a 2-power (square) [30]. By way of contrast,
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one can decide in linear time whether a graph G is a k-power of a tree for any
fixed k [9,26,29], and one can also find an integer k and a tree T in linear time
such that G = T k [9].

In this paper we concentrate on certain practically motivated variants of tree
powers. Whereas Kearney and Corneil [22] studied the problem where ev-
ery tree node one-to-one corresponds to a graph vertex, Nishimura, Ragde,
and Thilikos [33] introduced the notion of leaf powers where exclusively the
tree leaves stand in one-to-one correspondence with the graph vertices. In
addition, Lin, Kearney, and Jiang [28], Chen, Jiang, and Lin [11], and Chen
and Tsukiji [12] examined the variant of leaf powers where all inner nodes of
the root tree have degree at least three. Both problems find applications in
computational evolutionary biology [11,28,33]. The corresponding recognition
problems are called k-Leaf Power [33] and k-Phylogenetic Root [28],
respectively. 1 k-Leaf Power is solvable in linear time for k ≤ 5 [4,6,8], and
k-Phylogenetic Root is solvable in polynomial time for k ≤ 4 [33,28].
The complexities of both recognition problems are open for k ≥ 6 and k ≥ 5,
respectively, although it is known that every so-called strictly chordal graph is
a k-leaf power for every k [24] (see also [3] for similar results on further graph
classes), and 5-Phylogenetic Root can be solved in cubic time on strictly
chordal graphs [23].

Several groups of researchers [11,22,28] advocated the consideration of a more
relaxed or “approximate” version of the graph power recognition problem:
Now, look for roots whose powers are close to the input graphs, thus turning
the focus of study to the corresponding graph modification problems. Kear-
ney and Corneil [22] were the first to formulate this problem setting when
introducing the Closest k-Tree Power problem. In this “error correction
setting” the question is whether a given graph can be modified by adding
or deleting at most r edges such that the resulting graph has a k-tree root.
This problem turns out to be NP-complete for k ≥ 2 [22,21,14]. One also
obtains NP-completeness for the corresponding problems Closest k-Leaf
Power [25,13] and Closest k-Phylogenetic Root [11,36].

All nontrivial (k ≥ 2) “approximate recognition” problems in our context turn
out to be NP-complete [2,11,13,14,21,22,25,35,36]. Hence, the pressing quest
is to also show positive algorithmic tractability results such as polynomial-
time approximation or non-trivial (exponential-time) exact algorithms. For the
most simple version of Closest k-Leaf Power, k = 2, intricate polynomial-
time constant-factor approximation algorithms have been developed [2,10,1,37].

1 Both problems k-Leaf Power and k-Phylogenetic Root ask whether a given
graph is a leaf power resp. a phylogenetic power. We find it more natural to use the
term power instead of the term root here, although we used the term root in the
conference version of our previous considerations concerning the case k = 3 [13].
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After a series of improvements, the best known polynomial-time approxima-
tion is by a factor of 2.5 [1,37]. 2 Moreover, it is fairly easy to show that
for k = 2 the problem is fixed-parameter tractable with respect to the param-
eter r denoting the number of allowed edge modifications [19]. In particular,
efficient polynomial-time data reduction rules have been proposed, which yield
so-called problem kernels consisting of only O(r) vertices [17,20]. At least with
respect to these fixed-parameter tractability results, the success is surely due
to the fact that there is a very simple characterization by a forbidden sub-
graph: a graph is a 2-leaf power iff it contains no induced 3-vertex subgraph
forming a path. Observe that also the recognition problem for 2-leaf powers
is solvable in linear time by just checking whether the given graph is a dis-
joint union of cliques. By way of contrast, the recognition problem for 3-leaf
and 4-leaf powers is much harder [4,6,33]. At first sight, this lowers the hope
for obtaining positive algorithmic results for Closest k-Leaf Power for
k = 3, 4. The key idea we put forward here and in a companion paper [13]
is to again develop and employ forbidden subgraph characterizations of the
respective graph classes. Unlike for 2-leaf powers, these characterizations are
not so obvious. In [13], we described a forbidden subgraph characterization
for 3-leaf powers, consisting of five graphs of small size. Here, we employ a
forbidden subgraph characterization for 4-leaf powers—it requires numerous
forbidden subgraphs.

Let us discuss the algorithmic use of these forbidden subgraph characteriza-
tions. First, both characterizations immediately imply polynomial-time recog-
nition algorithms for 3- and 4-leaf powers that are conceptually simpler than
those in [33]. However, our algorithms are of purely theoretical interest be-
cause the running times of these straightforward algorithms are much worse
than that of the known cubic-time algorithms from [33]. More important,
the characterizations open up the way to the first tractability results for the
harder problems Closest k-Leaf Power for k = 3, 4. Using the forbidden
subgraphs for 3-leaf powers, in [13] we showed that Closest 3-Leaf Power
is fixed-parameter tractable with respect to the parameter “number r of edge
modifications.” Due to the significantly increased combinatorial complexity of
4-leaf powers (with numerous forbidden subgraphs instead of only a handful),
analogous results for Closest 4-Leaf Power remained open in [13]. We
close this gap here. We show that Closest 4-Leaf Power can be solved
in polynomial time for r = O(log n/ log log n); that is, it is fixed-parameter
tractable with respect to the parameter r. Moreover, the variants of Closest
4-Leaf Power where only edge insertions or only edge deletions are allowed
are fixed-parameter tractable as well. On the way to our main result (Sec-
tion 4), we develop a “compressed form” of a forbidden subgraph character-

2 Note that in the various papers (partially not referring to each other) Closest
2-Leaf Power appears under various names such as Cluster Editing [35] and
Correlation Clustering [1,2,10,37].

3



Originally published in Discrete Applied Mathematics, 156(18):3345–3361. Elsevier B. V, 2008.

ization of 4-leaf powers (Section 3) that has been developed—independently
and by different means—by Rautenbach [34]. Since we aim at algorithmic
tractability results for Closest 4-Leaf Power, we employ a “more con-
structive” approach.

2 Preliminaries

We consider only undirected graphs G = (V,E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v), ignoring any ordering. For a graph G =
(V,E) and u, v ∈ V , let dG(u, v) denote the length of a shortest path between u
and v in G. With E(G), we denote the edge set E of a graph G. We call
a graph G′ = (V ′, E ′) an induced subgraph of G = (V,E) and denote G′

with G[V ′] if V ′ ⊆ V and E ′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. For a
non-empty collection of graphs G, a graph is said to be G-free if it does not
contain any graph in G as an induced subgraph. A cycle with n vertices is
denoted as Cn. An edge between two vertices of a cycle that is not part of the
cycle is called chord. An induced cycle of length at least four is called hole—
note that a hole is chordless. A chordal graph then is a hole-free graph. Let
a minimum edge cut, denoted by MinCut(G, V1, V2), be a minimum weight
set of edges in G = (V,E) that disconnects all vertices in V1 ⊆ V from those
in V2 ⊆ V . We say that a set is maximal with respect to some property if it is
not a proper subset of another set with that property. For two sets A and B,
A △ B denotes the symmetric difference (A \B) ∪ (B \ A).

Definition 2.1 ([33]) Consider an unrooted tree T with leaves one-to-one la-
beled by the elements of a set V . The k-leaf power of T is a graph, denoted T k,
with T k := (V,E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}. We call T
a k-leaf root of T k.

The k-Leaf Power (LPk) problem then is to decide, given a graph G,
whether there is a tree T such that T k = G.

One may view the leaf power concept as a “Steiner extension” of the standard
notion of tree powers [11,28]. The more general, approximate version of LPk we
focus on in this work, called Closest k-Leaf Power (CLPk), then reads as
follows. Given a graph G = (V,E) and a nonnegative integer r, is there a tree T
such that T k and G differ by at most r edges, that is, |E(T k) △ E(G)| ≤ r?
CLPk is NP-complete for k ≥ 2 [25,13].

In this paper we also study two variations of CLPk referring to only one-sided
errors: CLPk Edge Insertion only allows insertion of edges and CLPk
Edge Deletion only allows deletion of edges. CLPk Edge Deletion is
NP-complete for k ≥ 2 [31,13], and CLPk Edge Insertion is NP-complete
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G CC(G)

Fig. 1. A graph G (left) with critical cliques marked by ellipses, and its critical
clique graph CC(G) (right).

for k ≥ 3 but trivially polynomial-time solvable for k = 2 [13].

A central technical tool within this work are critical cliques and critical clique
graphs as Lin et al. [28] introduce them.

Definition 2.2 A critical clique of a graph G is a clique K where the vertices
of K all have the same set of neighbors in G\K, and K is maximal under this
property. Consider a graph G = (V,E). Let VC be the collection of its critical
cliques. Then the critical clique graph CC(G) is a graph (VC , EC) (we use the
term nodes for its vertices) with

(Ki, Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two
nodes are connected iff the corresponding critical cliques together form a larger
clique.

See Figure 1 for an illustration. Note that if G is chordal, then so is CC(G),
since if CC(G) contained a hole, we could also find a hole in G by taking
one arbitrary vertex from each critical clique on the cycle in CC(G). Given a
chordal graph G, its critical clique graph CC(G) can be computed in O(n+m)
time [28].

Eventually, for technical reasons we also need the concept of a k-Steiner root.

Definition 2.3 Consider a graph G = (V,E) and an arbitrary set of ver-
tices A with A∩V = ∅. An unrooted tree T = (A∪V,E ′) is called a k-Steiner
root of G if E = {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

Note that if A = ∅, then a k-Steiner root simply is a k-tree root. Similarly,
if A is the set of inner nodes of T , then a k-Steiner root is the same as a k-leaf
root. This means that the set of graphs that have k-Steiner roots is a superset
of the set of graphs that have k-tree roots or k-leaf roots. The following lemma
is easy to show (a similar statement was already made by Lin et al. [28]).

Lemma 2.1 A graph G has a k-leaf root iff CC(G) has a (k−2)-Steiner root.
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F1 F2 F3 F4 F5 F6 F7 F8

Fig. 2. The eight forbidden subgraphs for critical clique graphs of 4-leaf powers

We show that CLP4 and both its edge insertion and edge deletion variants are
fixed-parameter tractable (FPT) with respect to the parameter r. That is, we
show that CLP4 can be solved in f(r) · nO(1) time, where f is a computable
function only depending on r, and n denotes the number of vertices of the input
graph. More on fixed-parameter tractability and parameterized complexity can
be found in the monographs [15,18,32].

3 Forbidden Subgraph Characterization of 4-Leaf Powers

In this section we give a characterization of 4-leaf powers using a set of eight
forbidden induced subgraphs for the critical clique graphs of 4-leaf powers.
This set can be extended to a larger set of forbidden subgraphs for the 4-
leaf powers themselves by a simple iterative algorithm. Independently and
by different proof techniques, Rautenbach [34] achieves the same results. Our
approach, however, is tailored towards the algorithmic treatment following in
the next section. The eight forbidden subgraphs for critical clique graphs of
4-leaf powers are shown in Figure 2. Let F := {F1, F2, . . . , F8} as given there.

The main result of this section is as follows:

Theorem 3.1 For a graph G, the following are equivalent:

(1) G is a 4-leaf power.
(2) G is chordal and its critical clique graph CC(G) is F-free.

The forbidden subgraph characterization of Theorem 3.1 refers to critical
clique graphs. However, it directly implies a somewhat more extensive for-
bidden subgraph characterization for the original graphs.

Corollary 3.1 All 4-leaf powers are chordal, and chordal graphs that are 4-
leaf powers can be characterized by a finite set of forbidden subgraphs.

PROOF. Consider a graph G with its critical clique graph CC(G). Using
Theorem 3.1, one forbidden subgraph from the set F corresponds to several
subgraphs in G: If a graph Fi ∈ F is an induced subgraph of CC(G), then
there is also an induced Fi in G. Moreover, if Fi contains a pair u, v of adjacent
nodes with the same neighborhood, then one can find an induced Fi in G plus
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F2

u v

A
to graph Bto graph B

B isomorphicisomorphic

not chordal not chordal not chordalnot chordal

Fig. 3. The graph F2 as an example for a forbidden subgraph in CC(G) and the
corresponding forbidden subgraphs in G. Note that F2 alone is not a forbidden
subgraph in G, since it induces no F2 in CC(G) when the two degree-4 vertices are
in the same critical clique. There are sixteen forbidden subgraphs in G corresponding
to F2 (of which only two are chordal and pairwise non-isomorphic). The figure shows
the eight possibilities in the case that there is a vertex that is adjacent to u but not
to v.

a vertex that is adjacent to exactly one of the critical cliques represented by u
and v; otherwise, since each critical clique is maximal under the property of
having the same neighborhood, there could not be two distinct nodes u and v
in CC(G). This vertex, which we call a distinguishing vertex, may be adjacent
to every combination of the critical cliques represented by the other nodes of Fi

and, if there are more pairs of adjacent nodes with the same neighborhood
in Fi, to every combination of the other distinguishing vertices added to Fi. By
examining all these combinations and weeding out isomorphic and nonchordal
graphs, we can construct the complete set of forbidden subgraphs for G. For
instance, F2 ∈ F leads to two forbidden subgraphs for G (see graphs A and B
in Figure 3). 2

The remaining part of this section is devoted to the proof of Theorem 3.1. We
begin with the direction “(1) ⇒ (2):”

Proposition 3.1 If a graph G is a 4-leaf power, then G is chordal and its
critical clique graph CC(G) is F-free.

PROOF. If G is a leaf power, then G must be chordal [28]. With Lemma 2.1,
it suffices to show that if CC(G) has a 2-Steiner root, then CC(G) is F -free.
In the following, we only show that a critical clique graph which has a 2-
Steiner root contains no induced F2. The proof for the other subgraphs in F
is analogous.

Suppose that there is an induced F2 in CC(G) and CC(G) has a 2-Steiner
root T . Let u, v denote the two nodes having four neighbors in the induced F2

and let w, x, y denote the other three nodes. Consider nodes w, x which are
not adjacent in CC(G). Then, dT (w, x) ≥ 3. Since w and x have common
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Fig. 4. The left graph is a subgraph of F2 containing two nonadjacent nodes w

and x. Nodes w and x have two common neighbors u and v. The only possible
2-Steiner root for this subgraph is shown in the right graph with {w, x} = {a, d}
and {u, v} = {b, c}.

neighbors u and v, we have that

max{dT (u,w), dT (u, x), dT (v, w), dT (v, x)} ≤ 2.

This implies that u and v lie on the path in T between w and x. Moreover,
dT (w, x) < 4 since, otherwise, there are no two distinct nodes on the path
between w and x in T which have distance of at most two to both w and x
in T . Therefore, dT (w, x) = 3. See Figure 4 for an illustration. With the same
argument, for the nonadjacent nodes x, y, the path between them in T passes
only u and v. Then, one of u and v has to be a common neighbor to w and y,
and we have dT (w, y) = 2. Since w and y are nonadjacent in F2, this is a
contradiction to T being a 2-Steiner root of CC(G). 2

The reverse direction, i.e., “(2) ⇒ (1),” is technically more difficult.

Proposition 3.2 If a graph G is chordal and its critical clique graph CC(G)
is F-free, then G is a 4-leaf power.

PROOF. If G is chordal, then CC(G) is also chordal. We show constructively
that every F -free and chordal critical clique graph indeed has a 2-Steiner root
by using Algorithm SRG (Figure 5). This algorithm reuses the constructions
of [28]. For more details of the algorithm, see Section 3.1.

The correctness of the algorithm will be shown by the following three claims:

(1) Every maximal clique K of an (F ∪ {C4, C5})-free critical clique graph
CC(G) is considered at least once by Algorithm SRG, and for every node
pair u, v in K, a path of length at most two is generated between the
corresponding nodes of u and v in the output graph.

(2) For an (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC) Algo-
rithm SRG outputs a graph with the following property: If two nodes u, v ∈
VC are not adjacent in CC(G), then the distance between the nodes cor-
responding to u and v in the output graph is at least three.

(3) For a chordal and F -free critical clique graph CC(G) the output graph
of Algorithm SRG is a tree.
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SRG(CC(G) = (VC , EC))
Input: (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC)
Output: Pseudo Steiner root graph S of CC(G)

1 S ← ({bc | c ∈ VC}, ∅)
2 L← list of all maximal cliques of CC(G)
3 while there is a maximal clique K in L which shares edges (c1, c2)

and (c1, c3) with two other maximal cliques K ′ and K ′′ in CC(G):
4 Delete K from L
5 for c ∈ K, c 6= c1:
6 Insert an edge between bc1 and bc

7 while there is a maximal clique K in L which shares one edge (c1, c2)
with one other maximal clique K ′ in CC(G):

8 Delete K from L
9 if K ′ is in L:
10 for c ∈ K, c 6= c1:
11 Insert an edge between bc1 and bc

12 else:
13 c′ ← a node in K ′ \K
14 if there is an edge (bc1 , bc′) in S:
15 for c ∈ K, c 6= c2:
16 Insert an edge between bc2 and bc

17 else:
18 for c ∈ K, c 6= c1:
19 Insert an edge between bc1 and bc

20 while there is a maximal clique K in L:
21 Delete K from L
22 Add a new node sK into S
23 for c ∈ K:
24 Insert an edge between sK and bc

25 while there are at least two connected components S1 and S2 in S:
26 Add two new edge-connected Steiner nodes s1 and s2 to S and connect s1

by an edge to an arbitrary node in S1 and s2 to an arbitrary node in S2

27 return S

Fig. 5. Algorithm to construct the pseudo Steiner root graph S of a critical clique
graph CC(G). In the next section we show that there are at most 2 · |EC | maximal
cliques in an (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC).

The proofs of these claims are in Section 3.2. Together with Lemma 2.1, the
claims prove Proposition 3.2. 2

We say that a graph has the “distance property” if it fulfills Claims 1 and 2;
note that exactly this distance property is required by Definition 2.3 for trees
to be Steiner roots. The fixed-parameter algorithms for CLP4 in Section 4 also
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make use of these claims.

3.1 The Algorithm SRG

We now present the algorithm used in the proof of Proposition 3.2. It extends
a method by Lin et al. [28] for constructing 2-Steiner roots: While their al-
gorithm only computes an output graph if the input graph has a 2-Steiner
root and says “no” otherwise, our Algorithm SRG (Figure 5) also gener-
ates an output graph with some guaranteed properties for inputs that are
(F ∪ {C4, C5})-free but nonchordal graphs. This will be of use for our fixed-
parameter algorithms in Section 4.

For a given critical clique graph CC(G) = (VC , EC), Algorithm SRG constructs
a pseudo Steiner root graph S = (V ′, E ′) with V ′ := A ∪ B, where B := {bc |
c ∈ VC} and A ∩ B = ∅. The nodes in A and B are called Steiner and non-
Steiner nodes, respectively. Each non-Steiner node one-to-one corresponds to
a node in CC(G), whereas Steiner nodes do not correspond to nodes in CC(G).
If CC(G) is F -free and chordal, then S is a 2-Steiner root of CC(G). (The term
“pseudo Steiner root graph” expresses that if the input graph is (F∪{C4, C5})-
free but nonchordal, then the output S has some, but not all properties of a
2-Steiner root.)

The idea of the algorithm is to consider every maximal clique of the input
graph CC(G) and to connect the corresponding nodes in the output graph
to form a star. More specifically, if a maximal clique K in CC(G) has an
edge e in common with another maximal clique K ′, then the node in the
output graph corresponding to one of the endpoints of e is connected by edges
with the other nodes corresponding to K and the node in the output graph
corresponding to the other endpoint of e is connected by edges with the other
nodes corresponding to K ′ (lines 3–19 in Figure 5). If otherwise K has no edge
in common with another maximal clique, a Steiner node sK is inserted into
the output graph, and every node corresponding to a node of K is connected
by an edge with sK (lines 20–24 in Figure 5; see Figure 6 for an example).

3.2 Correctness of the Claims

Here, we show that the three claims used in the proof of Proposition 3.2 hold.
To this end, we need the following four lemmas which show some specific
properties of (F ∪ {C4, C5})-free critical clique graphs. The proofs of the first
two lemmas can be found in [28]. We call an edge shared by at least two
maximal cliques a 2-edge.

10
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K1

K2 K3 K4
v1

v2 v3

bv1

bv2
bv3

SRG(CC(G)):CC(G):

Fig. 6. Example of a subgraph of a critical clique graph CC(G) and the pseudo
Steiner root graph computed for this subgraph. Algorithm SRG first considers the
maximal clique K1 with c1 = v1 (see Figure 5) and inserts edges between bv1

and the
other nodes corresponding to K1. Thereafter, the cliques K2 and K3 are considered.
When considering K4, Algorithm SRG inserts a Steiner node (drawn white).

Lemma 3.1 In an {F1}-free critical clique graph, two maximal cliques have
at most two nodes in common.

Lemma 3.2 In an {F1, F2}-free critical clique graph, three maximal cliques
have at most one node in common.

Lemma 3.3 In an {F1, F3, F4, C4}-free critical clique graph, if a maximal
clique K contains two or more 2-edges, then there is exactly one node that
is an endpoint of all 2-edges in K.

PROOF. If a maximal clique K of the critical clique graph CC(G) contains
two or more 2-edges, then no two of them can be node-disjoint: Suppose that
there are two 2-edges e = (u1, v1) and e′ = (u2, v2) being node-disjoint. By
Lemma 3.1, there exist two distinct maximal cliques K1 and K2 sharing with K
edges e and e′, respectively, and there are two nodes u ∈ (K1 \ K) and v ∈
(K2 \K). Since CC(G) is {F1}-free, none of the edges (u, u2), (u, v2), (v, u1),
and (v, v1) is in EC . Moreover, (u, v) /∈ EC ; otherwise, there would be a C4

induced by u, v, u1, u2 in CC(G). This implies that the edges e and e′ together
with u and v induce a forbidden subgraph F3 which is a contradiction.

Consider a maximal clique K containing more than two 2-edges. Suppose
that there are three distinct 2-edges such that there is no node which is an
endpoint of all these three 2-edges. Any two of these three 2-edges have a
common endpoint as shown above. Thus, these three 2-edges induce a triangle.
With almost the same argument used above, we can show that this triangle
together with three nodes which are from the three maximal cliques sharing
these three edges with K, respectively, induce the forbidden subgraph F4. This
gives a contradiction. 2

Lemma 3.4 In an {F1, F2, F5, F6, C4, C5}-free critical clique graph CC(G), if
two 2-edges share an endpoint v, then there is exactly one maximal clique K
that contains the three endpoints of these two 2-edges. Moreover, K contains
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the endpoints of all 2-edges incident to v.

PROOF. The proof is by contradiction. Suppose that there are two 2-edges (vi, vj)
and (vj, vk) in CC(G) that are not part of a common maximal clique, i.e.,
(vi, vk) /∈ EC . Let the two maximal cliques containing (vi, vj) be Ka and Kb,
and let the two maximal cliques containing (vj, vk) be Kc and Kd. Since (vi, vk) /∈
EC , Ka, Kb, Kc, Kd are pairwise distinct. We consider the following two cases.

The first case is that there is a node vb other than vj that is contained in
exactly one of Ka and Kb and in exactly one of Kc and Kd, say in Kb and Kd.
Clearly, vb is different from vi and vk. Let va be a node in Ka \ Kb and vc

a node in Kc \Kd. Node va cannot be identical to vc; otherwise, va, vk, vb, vi

would induce a C4. With the same argument, neither va and vk nor vc and vi

are adjacent. If va and vc are adjacent, then va, vc, vk, vb, vi induce a C5. If va

and vc are not adjacent, then va, vi, vb, vk, vc, vj induce an F5.

The second case is that vj is the only node that is contained in at least
one of Ka and Kb and in at least one of Kc and Kd. Let va be a node
in Ka \ Kb, vb a node in Kb \ Ka, vc a node in Kc \ Kd, and vd a node
in Kd \Kc with (va, vb) /∈ EC and (vc, vd) /∈ EC . Node vi cannot be adjacent
to vc; otherwise, there would be a maximal clique containing vi, vj, vc which
shares edge (vi, vj) with the maximal cliques Ka and Kb, a contradiction to
Lemma 3.2. With the same argument, none of (vi, vd), (vk, va), and (vk, vb)
can be in EC . Since CC(G) is {F5, C4}-free, node va or node vb is adjacent to
neither vc nor vd. Then vi, va, vb, vj, vc, vd, vk induce the forbidden subgraph F6.

The uniqueness of the maximal clique that contains all the 2-edges follows
from Lemma 3.1. 2

Now, we are in the position to show the three claims.

Claim 1 Every maximal clique K of an (F ∪ {C4, C5})-free critical clique
graph CC(G) is considered at least once by Algorithm SRG, and for every
node pair u, v in K, a path of length at most two is generated between the
corresponding nodes of u and v in the output graph.

PROOF. This claim follows directly from Lemmas 3.1–3.3 and the descrip-
tion of Algorithm SRG. 2

Claim 2 For an (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC)
Algorithm SRG outputs a graph with the following property: If two nodes u, v ∈
VC are not adjacent in CC(G), the distance between the nodes corresponding
to u and v in the output graph is at least three.
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Fig. 7. Illustration of the three cases in the proof of Claim 2.

PROOF. For two nonadjacent nodes vi and vk in CC(G), their corresponding
non-Steiner nodes cannot be adjacent in the pseudo Steiner root graph S
output by Algorithm SRG: An edge between two non-Steiner nodes can be
inserted only by the first or the second while-loop of Algorithm SRG. However,
the conditions of these two while-loops imply that vi and vk have to be adjacent
in CC(G). In the following, we show by contradiction that the distance between
the corresponding non-Steiner nodes of vi and vk cannot be two. Suppose that
there is a path bvi

, bvj
, bvk

in S, where there is no edge between the non-Steiner
nodes bvi

and bvk
. The node bvj

cannot be a Steiner node since a Steiner node
is only adjacent to non-Steiner nodes whose corresponding nodes in CC(G)
induce a clique due to the third while-loop of Algorithm SRG. Hence, all three
nodes are non-Steiner nodes.

By the description of Algorithm SRG, the edges (bvi
, bvj

) and (bvj
, bvk

) can
be inserted only if there are two maximal cliques in CC(G) that contain the
edges (vi, vj) and (vj, vk), respectively, and both maximal cliques contain at
least one 2-edge. We distinguish three cases based on whether the 2-edges in
these two maximal cliques have vj as an endpoint or not. The three cases
are illustrated in Figure 7. In the first case where vj is not the endpoint of
the two 2-edges (va, vc) and (vd, vf ), the maximal clique containing vi and vj

is K2 with vi ∈ {va, vc} and the maximal clique containing vj and vk is K3

with vk ∈ {vd, vf}. In the second case where vj is the endpoint of one 2-edge,
we can without loss of generality assume that the 2-edge in the maximal clique
containing vj and vk has vj as one endpoint. Then, vk can be one of vd, ve,
and vf . In the third case, both of the two 2-edges have vj as one endpoint.
Here, vi ∈ {va, vb, vc} and vk ∈ {vd, ve, vf}.

In each of these three cases, one can make a further case distinction based
on whether two nodes in Figure 7 which are not vi, vj, or vk can be iden-
tical or whether there are additional edges between the nodes. However, in
each of these cases, either we can find one of the induced subgraphs in F ∪
{C4, C5} in CC(G), or we can conclude that the algorithm cannot create both
edges (bvi

, bvj
) and (bvj

, bvk
) in S. This completes the proof. 2

In order to show Claim 3, we need the following lemma. The fixed-parameter
algorithms for CLP4 in Section 4 also make use of this lemma.

13
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Lemma 3.5 For an (F∪{C4, C5})-free critical clique graph CC(G) the output
graph of Algorithm SRG contains no cycle of length less than seven.

PROOF.

Triangles We start with showing that there is no triangle in the pseudo
Steiner root graph S constructed by Algorithm SRG. Hence, for the purpose
of contradiction, suppose that S contains a triangle. Since the algorithm does
not insert an edge between two Steiner nodes, at most one of the three nodes
of this triangle can be a Steiner node. We distinguish two cases:

Case 1: One node of the triangle is a Steiner node. Then let s, bv1
, and bv2

be
the nodes of the triangle where s is the Steiner node. On the one hand, by
the construction of the third while-loop of Algorithm SRG, the neighbors of s
in S (in particular bv1

and bv2
) correspond to the nodes of a maximal clique K

in CC(G) that shares no edge with another maximal clique. On the other
hand, the edge between bv1

and bv2
can only have been inserted in the first

or second while-loop of Algorithm SRG. Hence, there must exist a maximal
clique K ′ in CC(G) that contains both v1 and v2 and that contains a 2-edge
with endpoint v1 or v2. Then, K and K ′ share the edge (v1, v2) and we have
a contradiction.

Case 2: The triangle contains no Steiner node. Then let bv1
, bv2

, and bv3
be

the nodes of the triangle. For the edge (bv1
, bv2

) to be inserted, there must
be a maximal clique K1 in CC(G) with v1, v2 ∈ K1 for which the algorithm
selects one of the nodes bv1

or bv2
, say bv1

, to be connected with all other nodes
corresponding to the nodes of K1.

Analogously, the edge (bv2
, bv3

) can only be inserted if there exists a maximal
clique K2 6= K1 in CC(G) with v2, v3 ∈ K2 for which the algorithm selects one
of the nodes bv2

or bv3
and connects it with all other nodes corresponding to

the nodes of K2.

In S the three nodes bv1
, bv2

, and bv3
all have a distance of at most two to

every node of K1 as well as to every node of K2. But then, by Claims 1 and 2,
the nodes v1, v2, and v3 all are part of both K1 and K2—a contradiction to
Lemma 3.1.

Cycles of length 4 Next, we show that there is no cycle of length 4 in S.
Suppose, for the sake of a contradiction, that S contains a length-4 cycle, but
no triangle. Here we have to distinguish three cases:

14



Originally published in Discrete Applied Mathematics, 156(18):3345–3361. Elsevier B. V, 2008.

Case 1: Two nodes of the cycle are Steiner nodes. Then let s1, bv1
, s2, and bv2

be the nodes of the cycle, where s1 and s2 are the Steiner nodes. By the
construction of the third while-loop of Algorithm SRG, the neighbors of a
Steiner node correspond to the nodes of a maximal clique K in CC(G) that
shares no edge with another maximal clique. But then v1 and v2 both belong
to two such maximal cliques, which is a contradiction.

Case 2: One node of the cycle is a Steiner node. Then let s, bv1
, bv2

, and bv3

be the nodes of the cycle, where s is the Steiner node. On the one hand,
the neighbors of s in S (in particular bv1

and bv3
) correspond to the nodes

of a maximal clique K in CC(G) that shares no edge with another maximal
clique and that does not contain v3. On the other hand, the distance between
each two of the nodes bv1

, bv2
, and bv3

in S is at most two, which implies,
due to Claim 2, that there is a maximal clique in CC(G) that contains v1,
v2 and v3—a contradiction to the fact that K shares no edge with another
maximal clique.

Case 3: The cycle contains no Steiner node. Because the the distance between
each two of the four nodes of the cycle is at most two, there is a clique K
in CC(G) that contains all these four nodes due to Claim 2. But then, since
the Algorithm SRG must consider K at least once, there must be a node
(which can be a Steiner node) in S that is adjacent to all four nodes of the
cycle, which implies that S contains a triangle.

Cycles of length 5 In order to show that there is no cycle of length 5 in S,
suppose, for the sake of a contradiction, that S contains a length-5 cycle, but
no cycle of length less than five. Since the algorithm does not insert an edge
between two Steiner nodes, at most two of the five nodes of this cycle can
be Steiner nodes, and these Steiner nodes cannot be adjacent. Hence, let x1,
bv1

, x2, bv2
, and bv3

be the nodes of the cycle where each of x1 and x2 can be
a Steiner node. Because the distance between each two of the nodes bv1

, bv2
,

and bv3
is at most two, we can find a triangle in S with the same argumentation

as in the last case for cycles of length 4.

Cycles of length 6 For the sake of a contradiction, suppose that S contains
a length-6 cycle, but no cycle of length less than six. We distinguish two cases:

Case 1: The cycle consists of the nodes s1, bv1
, bv2

, s2, bv3
, and bv4

, where s1

and s2 are Steiner nodes. Due to Claims 1 and 2, the nodes v1, v2, v3, and v4

induce a C4 in CC(G)—a contradiction.

Case 2: The cycle consists of the nodes x1, bv1
, x2, bv2

, x3, and bv3
, where each

of x1, x2, and x3 can be a Steiner node. Because the the distance between each

15
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two of the nodes bv1
, bv2

, and bv3
is at most two, we can find a triangle or an

induced C4 in S with an argumentation similar to the last case for cycles of
length 4. 2

Although for (F∪{C4, C5})-free critical clique graphs CC(G) the output graph
of Algorithm SRG contains no cycle of length at most 6, it can still contain
cycles of greater length; consider, for example, the output graph when the
input CC(G) is a C6: in this case, the algorithm outputs a C12. However,
if CC(G) is not only (F ∪ {C4, C5})-free but chordal, Claim 3 states that the
output of Algorithm SRG contains no cycle at all. We will prove this claim
now.

Claim 3 For a chordal and F-free critical clique graph CC(G) the output
graph of Algorithm SRG is a tree.

PROOF. Suppose that the output graph S on input CC(G) is not a tree, and
CC(G) is (F ∪{C4, C5})-free. Consider the shortest cycle Q of S. Let CC(G)Q

denote the subgraph of CC(G) which is induced by the nodes of CC(G) whose
corresponding nodes are on Q. With Lemma 3.5, Q has a length of at least 7.
Since no two Steiner nodes are adjacent, CC(G)Q has at least four nodes. Fur-
thermore, CC(G)Q has a Hamiltonian cycle passing through all its nodes due
to Claim 1. We “embed” CC(G)Q into Q by identifying the nodes of CC(G)Q

with their corresponding non-Steiner nodes in Q. There can be some new edges
in this embedding which are not in Q and which are between two non-Steiner
nodes with a distance of two on Q due to Claims 1 and 2. However, since each
triangulation of a cycle with length of at least seven has to contain a chord be-
tween two nodes with a distance of at least three on this cycle, this embedding
is not a chordal graph. Moreover, it is easy to observe that every hole in this
embedding solely consists of non-Steiner nodes. This implies that CC(G)Q is
not chordal. As a consequence, CC(G) is then not chordal. 2

4 Fixed-Parameter Tractability of CLP4

In this section, we show the fixed-parameter tractability of CLP4 Edge
Deletion, CLP4 Edge Insertion, and CLP4 with respect to the param-
eter “number of edge editing operations” r. The basic approach resembles our
previous work for CLP3 [13]; however, for the case of CLP4 Edge Deletion
new, more intricate methods are necessary. Therefore, we focus on the CLP4
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Edge Deletion case in this section. 3

Note that graphs that have 3-leaf roots have a characterization similar to
that of Theorem 3.1: they are graphs that are chordal and contain none of
the induced subgraphs “bull,” “dart,” and “gem” [13]. Therefore, the basic
idea for CLP3 Edge Deletion as well as for CLP4 Edge Deletion is to
use the forbidden subgraph characterization in a depth-bounded search tree
algorithm: find a forbidden subgraph, and recursively branch into several cases
according to the possible edge deletions that destroy the forbidden subgraph.
If we can upper-bound the number of branching cases by a function depending
only on r, since the depth can be bounded from above by r, we obtain a run
time that proves fixed-parameter tractability.

Since the forbidden subgraph characterization from Theorem 3.1 for the crit-
ical clique graph CC(G) is much simpler than the implied characterization
for G (Corollary 3.1), we would like to apply modifications directly on CC(G).
This is possible by the following lemma, which is a straightforward extension
of Lemma 4 in [13].

Lemma 4.1 For a graph G, there is always an optimal solution for CLP4
that is represented by edge editing operations on CC(G). That is, one can find
an optimal solution that does not delete any edges within a critical clique;
furthermore, in this optimal solution, between two critical cliques either all or
no edges are inserted or deleted.

Now, working with CC(G) = (VC , EC) instead of G has two consequences:
First, a deletion of an edge e in CC(G) can represent several edge deletions
in G. Consider an edge e in CC(G) between two nodes that represent critical
cliques of sizes c1 and c2. Deleting e implies deleting all c1 · c2 edges between
the vertices of the critical cliques in G. Therefore, we give the edge e the
weight c1 · c2. Note that this means that an edge modification on CC(G)
can decrease the parameter r in the depth-bounded search tree algorithm by
more than one. Second, if two adjacent nodes in CC(G) obtain an identical
neighborhood after deleting edges in CC(G), then CC(G) needs to be updated,
since each node in CC(G) has to represent a critical clique in G. In this
situation a merge operation is needed, which replaces these nodes in CC(G)
by a new node with the same neighborhood as the original nodes. Note that a
hole can be destroyed by merge operations if we add or delete edges to make
its vertices have the same neighborhood. In the following, we assume that
after each modification of CC(G), all pairs of nodes in CC(G) are checked as
to whether a merge operation between them is required. This can be done
in linear time by modifying G accordingly and computing the critical clique
graph CC(G) of the modified graph G [28].

3 Note that for the edge insertion variant the fixed-parameter tractability immedi-
ately follows from Theorem 3.1 and results of Cai [7].
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The main obstacle in obtaining fixed-parameter tractability for both CLP3
Edge Deletion and CLP4 Edge Deletion is that the holes in CC(G) can
have arbitrary length, and, therefore, one cannot simply find some hole and
branch for each edge of the hole that is to be deleted—the size of the search
tree would not be a function depending on r. For CLP3 Edge Deletion,
the key observation is that the critical clique graph CC(G) of a graph G
containing neither a bull nor a dart nor a gem nor a C4 contains no triangles.
This allows to show that, after destroying the forbidden subgraphs bull, dart,
gem, and C4 in G, no hole in CC(G) can be “accidentally” destroyed by
merge operations between its nodes and, therefore, one has to delete at least
one edge of every hole. Since moreover making a triangle-free graph chordal
means to make it a forest, a minimum weight set of edges to be deleted to
make CC(G) chordal can be obtained in polynomial time by searching for a
maximum weight spanning tree. Unfortunately, there can be triangles in an
F -free (Figure 2) CC(G) as we obtain it for CLP4 after deleting the forbidden
subgraphs. Thus, the main technical contribution of this section is to show
how to circumvent these difficulties by new, more sophisticated techniques
than that required for CLP3 Edge Deletion.

The idea is to examine the output graph SRG(CC(G)) of Algorithm SRG
(Figure 5) for the critical clique graph CC(G). If it is a tree, we are done.
Otherwise, the output is a pseudo Steiner root graph S that contains a cycle
which corresponds to a hole in CC(G). By repeatedly deleting degree-1 nodes
and contracting the middle node of three consecutive degree-2 nodes in S we
get a graph S ′ in which there is no path that consists of three or more consec-
utive degree-2 nodes. By finding the shortest cycle in this reduced graph S ′,
whose length is bounded by O(log |V |) due to a result of Erdős and Pósa [16],
we can obtain an “FPT hole” in CC(G), that is, a hole for which we can bound
the number of possibilities to delete edges to get rid of the hole in an optimal
way by O(log |V |) (see Figure 8). This suffices to upper-bound the search tree
size by a function only depending on r.

For the pseudocode of this algorithm, which is presented in Figure 9, we in-
troduce some notation for the mapping between the nodes of a critical clique
graph and the nodes of its pseudo Steiner root graph.

Definition 4.1 Consider a critical clique graph CC(G) = (VC , EC) and a
pseudo Steiner root graph S = (VS, ES) constructed by Algorithm SRG for CC(G).
For v ∈ VC we use S(v) to denote the node from VS that corresponds to v,
and for vS ∈ VS, we define S−1(vS) as the node in VC corresponding to vS

if vS is a non-Steiner node, or ⊥ if vS is a Steiner node. We extend this no-
tation to sets: for V ′

C ⊆ VC, S(V ′

C) := {S(v) | v ∈ V ′

C}, and for V ′

S ⊆ VS,
S−1(V ′

S) := {S−1(v) | v ∈ V ′

S}.
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a) b)

c) d)

Fig. 8. Illustration of finding and destroying holes in an (F ∪ {C4, C5})-free critical
clique graph: a) A nonchordal critical clique graph CC(G). b) The pseudo Steiner
root graph S constructed by Algorithm SRG for CC(G). c) The reduced pseudo
Steiner root graph S′ constructed in lines 10–14 of Figure 9. d) The sets marked
with an ellipsis correspond to the degree-3 nodes in S′. Our algorithm for CLP4
Edge Deletion either deletes one of the bold edges or it deletes a minimum weight
set of edges between two of the node sets marked with an ellipsis (Lemma 4.3).

4.1 Correctness of the CLP4 Edge Deletion Algorithm

To define the branching set D in line 18 of Algorithm CLP4Del-Branch,
we need some notation.

Definition 4.2 A big node is a node of a pseudo Steiner root graph S that
is not deleted by the data reduction in lines 11–19 of Algorithm CLP4Del-
Branch (Figure 9) and that has degree at least 3 in the constructed pseudo
Steiner root graph S ′ (see Figure 10).

For a cycle Q in a pseudo Steiner root graph S as constructed by Algorithm
CLP4Del-Branch in line 16, let v0, . . . , vq−1 be the big nodes in Q, ordered
by their appearance in Q, and for every node vi with 0 ≤ i < q let Pi be the
path in Q between vi and v(i+1) mod q.
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CLP4Del-Branch(G, r)
Input: A graph G = (V,E) and an integer r
Output: A set of at most r edges in G whose removal makes G a 4-leaf power,

or nil if no such set exists
1 if r < 0: return nil
2 Compute CC(G)
3 if CC(G) contains an induced forbidden subgraph F ∈ F ∪ {C4, C5}:
4 for each edge e in F :
5 X ← CLP4Del-Branch(CC-Del(G, {e}), r−CC-Weight(G, {e}))
6 if X 6= nil: return X ∪ {e}
7 return nil
8 S ← SRG(CC(G))
9 if S is a tree: return ∅
10 S ′ ← S
11 while there is a degree-1-node u in S ′:
12 delete u
13 while there is a path (u, v, w) of three degree-2-nodes in S ′:
14 delete v and insert an edge between u and w
15 Q′ ← shortest cycle in S ′

16 Q← cycle in S corresponding to Q′

17 H ← S−1(Q) \ {⊥}
18 Determine a set D (see Lemma 4.3) of edge sets in CC(G)[H] such that at

least one d ∈ D is a subset of an optimal solution
19 for d ∈ D:
20 X ← CLP4Del-Branch(CC-Del(G, d), r−CC-Weight(G, d))
21 if X 6= nil: return X ∪ d
22 return nil

Fig. 9. Algorithm for CLP4 Edge Deletion. The lines 3–7 recursively try all
possibilities to destroy forbidden subgraphs, if existing (line 8 is only reached if
in the current recursive call of the algorithm no forbidden subgraph was found
in CC(G)). The lines 10–14 construct the graph S′. The lines 15–16 search for the
“FPT hole”, and the lines 17–22 try all possibilities that lead to the the destruction
of this hole. The subroutine CC-Del(G, d) takes a graph G and a set d of edges
in CC(G) as input. For every edge (K1, K2) ∈ d, all edges from G that have one
endpoint in the clique represented by K1 and the other endpoint in the clique
represented by K2 are deleted by CC-Del(G, d). The function CC-Weight(G, d)
returns the sum of the weights of the edges in d.

With P+
i we denote the path Pi plus its attached trees, that is, the maximal set

of nodes in S such that P+
i contains the nodes of Pi and such that P+

i induces
a connected component in S \ {vi, v(i+1) mod q}.

We further denote with Ai the big node areas that are defined as

Ai := S−1({v ∈ Q | dS(vi, v) ≤ 2}) \ {⊥}.
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S−1(P+
i )S−1(P+

(i−1) mod q)

vi

P+
(i−1) mod q P+

i

Fig. 10. Illustration for Definition 4.2. The upper picture shows a part of pseudo
Steiner root graph S. The encircled node vi represents a big node; black nodes
represent nodes that are part of a cycle in S. The grey nodes are deleted by the
data reduction in lines 11–14 of Algorithm CLP4Del-Branch. The only Steiner
node in this example is the node marked with a triangle. The lower picture shows the
corresponding part of CC(G). The edges drawn with bold lines are those between
vertices the big node area Ai.

The following lemma will help us to show that the cycle Q determined by
Algorithm CLP4Del-Branch (Figure 9) in line 16 indeed induces at least
one hole in CC(G).

Lemma 4.2 Consider a cycle Q in a pseudo Steiner root graph S as con-
structed by Algorithm CLP4Del-Branch (Figure 9) in line 16. Let v0, . . . , vp−1

be the nodes of Q, ordered by their appearance in Q. Then there is no edge (S−1(vi), S
−1(vj))

with 0 ≤ i, j < p in CC(G) such that vi and vj have a distance of more than 2
on Q.

PROOF. Assume there is such an edge (S−1(vi), S
−1(vj)) in CC(G). Without

loss of generality, let j > i. Because of the “distance property” of S (more
specifically, because of Claim 2), the distance in S between vi and vj is at
most two, and, hence, there have to exist at least three paths from vi to vj

in S: a path P1 = vi, vi+1, . . . , vj−1, vj consisting of at least four nodes, a path
P2 = vi, v(i−1) mod p, . . . , v(j+1) mod p, vj consisting of at least four nodes, and a
third path P3 consisting of at most three nodes (including vi and vj). Note
that P1 and P2 together form the cycle Q. Since there are three paths from vi

to vj, one can easily see that vi and vj must be big nodes. Without loss of
generality, let the node in P3 between vi and vj, if such a node exists, not be
a part of P2.
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The paths in S ′ corresponding to P1 and P2 consist of at least four nodes
(including vi and vj), because the data reduction which transforms S to S ′

never transforms a path that connects two big nodes and that consists of at
least four nodes into a path that consists of less than four nodes. The path
in S ′ corresponding to P3, however, has length at most three. Therefore, the
cycle Q′ which is the cycle in S ′ corresponding to Q (Figure 9) cannot be a
shortest cycle in S ′, because the cycle in S consisting of the paths P1 and P3

corresponds to a cycle in S ′ that is shorter than Q′. This is a contradiction
to the claim that Algorithm CLP4Del-Branch always chooses a shortest
cycle in S ′ in line 15. 2

The main observation that helps to bound the number of branching cases and,
hence, leads to our fixed-parameter algorithm is that for a cycle Q in a pseudo
Steiner root graph S the number of branching cases is independent of the
lengths of the paths in Q between the big nodes: If we want to disconnect two
big node areas, then it is always optimal to take an edge set with minimum
weight whose removal disconnects the two big node areas. Such an edge set
can be found in polynomial time by maximum flow techniques.

Using the notion of big node areas, we can conveniently give a precise charac-
terization of the branching set.

Lemma 4.3 Assume that in line 18 of CLP4Del-Branch the branching
set D is chosen as follows: Either delete an edge in a big node area, that is,
an edge (u, v) with u, v ∈ Ai for some 0 ≤ i < q, or delete a set of edges

MinCut
(

CC(G)[S−1(P+
i ) \ {⊥}], Ai, A(i+1) mod q

)

,

that is, delete a minimum weight set of edges such that all paths between two
neighboring big node areas are destroyed.

Then the branching set D contains at least one subset of an optimal solution.

PROOF. Consider an arbitrary optimal solution X for CLP4 Edge Dele-
tion. If X contains an edge from a big node area, then we are done. Consider
therefore the case that X does not contain an edge from a big node area. We
show that there is some i such that X disconnects Ai and A(i+1) mod q. It is
then easy to see that an optimal solution that disconnects Ai and A(i+1) mod q

does so by a minimum edge cut, concluding the proof.

Assume therefore now that X does not contain an edge in a big node area
and that it does not disconnect any Ai and A(i+1) mod q. After deleting the
edges in X from CC(G), we show that CC(G) still contains a hole. Observe
that if Ai ∩ A(i+1) mod q 6= ∅ for some 0 ≤ i < q, then X cannot disconnect Ai
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and A(i+1) mod q. Thus, we only examine the case that for every i 6= j the big
node areas Ai and Aj have no node in common.

First we show that there is a hole Z in the unmodified CC(G) that contains
only nodes from H := S−1(Q)\{⊥}. Assume for the sake of contradiction that
there is no such hole, that is, CC(G)[H] is chordal. Construct a graph R from Q
by inserting edges between each two non-Steiner nodes whose corresponding
nodes in CC(G)[H] are adjacent. The resulting graph R has to be chordal
since, compared to the chordal graph CC(G)[H], every Steiner node in R is
adjacent to only two non-Steiner nodes which are directly connected by an
edge. By Lemma 4.2, all edges added into R are the chords of Q between two
non-Steiner nodes with a distance of two in Q. However, each triangulation of
a cycle with length of at least seven has to contain a chord between two nodes
with a distance of at least three on this cycle. Since by Lemma 3.5 Q has a
length of at least seven, we have a contradiction and conclude that the hole Z
does in fact exist. We now go on to show that a “related” hole still exists in
the modified CC(G).

By our assumption of nonoverlapping big node areas, the hole Z contains at
least one node from every big node area Ai with 0 ≤ i < q, since otherwise
we obtain a contradiction to Lemma 4.2. Now we can easily show that, after
deleting the edges of X from CC(G), the resulting critical clique graph still
contains a hole: If an edge in Z between two big node areas Ai, A(i+1) mod q is
deleted by X, we can replace Z ∩ Pi by a path connecting Ai and A(i+1) mod q

whose nodes are all from P+
i . Clearly, Z is still a cycle after this modification.

Next we show that Z does not contain any new chords. For this, consider a
node u from such a replacement path, that is, S(u) ∈ P+

i \ Pi for some 0 ≤
i < q, and let v be the node in Pi that has the smallest distance to u. We show
that u can only be connected to a node in P+

i or to a node w where S(w) is
a neighbor of S(v) in S. Assume for the sake of contradiction that there is an
edge (u,w) in CC(G) such that S(w) is not a neighbor of S(v). Then S(u)
and S(w) have a distance of at most two in S due to the “distance property”
(Claims 1 and 2) of S. Hence, there exists a path from S(u) to S(w) in S
that does not contain S(v). But then, by the definition of P+

i , the node S(w)
would be in P+

i .

Now, a similar argumentation to that used to show the existence of the
hole Z shows that S−1({v0} ∪ P+

0 ∪ · · · ∪ {vq−1} ∪ P+
q−1) \ {⊥} induces a

hole in CC(G). 2

We summarize the findings of this section in the following proposition.

Proposition 4.1 Algorithm CLP4Del-Branch (Figure 9) correctly solves
CLP4 Edge Deletion.
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PROOF. The algorithm is organized as a standard search tree algorithm. By
Theorem 3.1, there is at least one branch that will lead to an optimal solution
when branching in line 5, and by Lemma 4.3, there is at least one branch that
will lead to an optimal solution when branching in line 20. 2

It remains to show the complexity of CLP4Del-Branch.

4.2 Complexity of the CLP4 Edge Deletion Algorithm

All steps within a single invocation of CLP4Del-Branch can be done in
polynomial time. We therefore focus on the number of recursive calls. In line 4,
there can be at most 10 recursive calls corresponding to at most 10 edges to
delete in a forbidden subgraph (for example F3 in Figure 2); as we will see,
this is dominated by the number of recursive calls in line 20 for destroying a
long cycle.

A well-known result by Erdős and Pósa [16] states that any graph with mini-
mum vertex degree at least 3 has a cycle of length at most 2 log n+1, where n
denotes the number of graph vertices. Using this result we can give an upper
bound on the size of the shortest cycle in S ′ and show the following lemma:

Lemma 4.4 When choosing D in line 18 of Algorithm CLP4Del-Branch
as described by Lemma 4.3, we can upper-bound its size by |D| ≤ 96 · log |V |+
24.

PROOF. Consider a cycle Q in a pseudo Steiner root graph S as constructed
by Algorithm CLP4Del-Branch (Figure 9) in line 16.

First, we show an upper bound for the number of big nodes in Q. It follows
directly from the result of Erdős and Pósa [16] that there is a cycle in S ′

which contains at most 2 log |VS| + 1 nodes of degree at least three, because
the graph resulting from contracting all degree-2 nodes in S ′ contains only
nodes of degree at least three, and re-inserting the degree-2-nodes into the
shortest cycle of this graph yields the claimed cycle in S ′. Moreover, the data
reduction which transforms S to S ′ guarantees that there can be at most
two degree-2-nodes between each pair of nodes of degree at least three in S ′.
Hence, the shortest cycle Q′ in S ′ has a length of at most 6 log |VS| + 3,
bounding thereby the number of big nodes in Q by the same number. Note
that 6 log |VS|+ 3 ≤ 6 log(|VC |+ |EC |) + 3 ≤ 12 log |VC |+ 3 since the number
of Steiner nodes in S is bounded by the number of maximal cliques in CC(G)
that do not share edges with other maximal cliques.
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Next, for every big node vi in Q we count the edges (u, v) with u, v ∈ Ai.
From the “distance property” (Claims 1 and 2) of the pseudo Steiner root
graph S we know that the only edges in CC(G) are those between nodes
whose corresponding nodes in S are at distance one or two. Then there can be
at most seven edges in CC(G) with both endpoints in Ai, because Ai consists
of at most five nodes whose corresponding nodes in S form a path.

Altogether, the set D contains, for each of the at most 12 log |V |+3 big nodes
in Q, seven edges between nodes of Ai plus one minimum weight edge set
disconnecting the nodes in Ai from those in A(i+1) mod q. This leads to the
bound |D| ≤ 96 · log |V |+ 24. 2

4.3 Fixed-Parameter Tractability Results

Using Lemma 4.4, we arrive at the following central result.

Theorem 4.1 CLP4 Edge Deletion with r edge deletions allowed is fixed-
parameter tractable with respect to r.

PROOF. By Proposition 4.1, Algorithm CLP4Del-Branch correctly solves
CLP4 Edge Deletion. By Lemma 4.4 and the fact that the height of the
search tree is bounded from above by r, it runs in (96 · log |V |+24)r · |V |O(1) =
cr · (r log r)r ·nO(1) time for a constant c (the equality holds because (log n)r ≤
(3r log r)r + n for all values of n and r). 2

With Theorem 4.1 and using the same techniques as applied for CLP3 Edge
Insertion and CLP3 [13], we achieve the following result:

Theorem 4.2 (1) CLP4 Edge Insertion with r edge insertions allowed
is fixed-parameter tractable with respect to r.

(2) CLP4 with r edge insertions and deletions is fixed-parameter tractable
with respect to r.

For CLP4 Edge Insertion, this follows from the fact that when we en-
counter a “long” induced cycle, that is, a cycle whose length is not bounded
by a function depending only on r, we know the instance cannot be solved,
because in order to destroy a cycle of length q with edge insertions, we have
to insert Ω(q) edges (see [13]). For CLP4, we first get rid of the “short” cy-
cles by branching; after that, inserting edges is useless, and we can continue
as for CLP4 Edge Deletion. In order to consider all “short” cycles be-
fore the “long” cycles, we modify Algorithm CLP4Del-Branch as follows:
In Line 10, to every edge of S ′ a weight equal to 1 is assigned; in Line 14,
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the newly inserted edge (u,w) gets a weight that is equal to the sum of the
weights of the edges (u, v) and (v, w); and in Line 15, we search for a cycle
with minimum weight in S ′ instead for a shortest cycle.

5 Concluding Remarks

Our fixed-parameter algorithm constitutes the first positive algorithmic result
for Closest 4-Leaf Power. To the best of our knowledge, so far results in
this direction are only obtained for the simpler problems Closest 2-Leaf
Power [2,10,19] and Closest 3-Leaf Power [13]. Besides improving on
our running times—so far our algorithms are probably of purely theoretical
interest—it would be challenging to study the fixed-parameter tractability of
Closest 5-Leaf Power. Note that there is a recent linear-time algorithm
for 5-Leaf Power [8]. As long as it remains open to determine the complex-
ity of k-Leaf Power for k ≥ 6, it seems to make little sense to study the
more general Closest k-Leaf Power for this case. Given our new results, it
is of particular interest to attack the open problem of finding good polynomial-
time approximation algorithms for Closest 3-Leaf Power and Closest
4-Leaf Power. The only known result in this direction is a factor-2.5 ap-
proximation algorithm for Closest 2-Leaf Power [1,2,10,37], the by far
simplest of these problems. Moreover, problem kernelization results for Clos-
est 3-Leaf Power and Closest 4-Leaf Power as such for Closest
2-Leaf Power [17,20] would be highly desirable.

Also the Closest k-Tree Power problems as introduced by Kearney and
Corneil [22] deserve further investigations. Note that they only state a straight-
forward solution that calls the (exact) tree power recognition algorithm O(nr)
times, thus exhaustively trying all possibilities. This clearly does not lead to
fixed-parameter tractability since the parameter r (number of edge modifica-
tions) appears in the exponent of the polynomial.
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