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Abstract

Complementing recent progress on classical complexity and polynomial-time ap-
proximability of feedback set problems in (bipartite) tournaments, we extend
and improve fixed-parameter tractability results for these problems. We show
that Feedback Vertex Set in tournaments (FVST) is amenable to the novel
iterative compression technique, and we provide a depth-bounded search tree for
Feedback Arc Set in bipartite tournaments based on a new forbidden sub-
graph characterization. Moreover, we apply the iterative compression technique
to d-Hitting Set, which generalizes Feedback Vertex Set in tournaments,
and obtain improved upper bounds for the time needed to solve 4-Hitting Set

and 5-Hitting Set. Using our parameterized algorithm for Feedback Ver-

tex Set in tournaments, we also give an exact (not parameterized) algorithm
for it running in O(1.709n) time, where n is the number of input graph vertices,
answering a question of Woeginger [Discrete Appl. Math. 156(3):397–405, 2008].

Key words: Feedback arc set, Feedback vertex set, Tournament, Bipartite
tournament, Fixed-parameter tractability, Iterative compression

1. Introduction

Feedback set problems deal with destroying cycles in graphs using a min-
imum number of vertex deletions or edge deletions [23]. When considering
directed graphs, there are basically two problems: Feedback Arc Set (FAS)
asks for a minimum number of arcs to be deleted in order to obtain a cycle-free

✩An extended abstract of this paper appeared in the Proceedings of the 6th Conference
on Algorithms and Complexity (CIAC 2006), May 29–31, 2006, Rome, Italy, volume 3998 in
Lecture Notes in Computer Science, pages 320–331, Springer, 2006. Besides improved running
times and an exact (non-parameterized) algorithm, this long version now presents, based on
the PhD thesis of the third author [33], new material on Hitting Set problems that has not
been part of the conference version. Moreover, a section concerning problem kernels has been
omitted, because its results have been improved by a publication of Abu-Khzam [1]. The
main work was done while all authors were with the Friedrich-Schiller-Universität Jena.
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Table 1: Complexity results for feedback set problems in tournaments. Herein, n denotes the
number of vertices and k denotes the size of the desired feedback solution set. The entry
“poly” in the running times of the approximation algorithms means that the authors did not
specify the running times of their polynomial-time approximations.

Approximation Fixed-parameter tractability

Complexity factor running time running time kernel

FVST NP-c [47] 2.5 [8] O(n3) O(2k · n2(log log n + k)) [§4] O(k2) [1]

FVSBT NP-c [9] 2 [50] poly O(3k · n2 + n3) [44] O(k3) [1]

FAST NP-c [5, 11, 16] PTAS [36] poly 2O(
√

k+log2 k) + nO(1) [6] O(k2)

FASBT NP-c [29] 4 [50] poly O(3.373k · n6) [§5] ?

directed graph, whereas Feedback Vertex Set (FVS) asks for a minimum
number of vertex deletions. Although feedback set problems usually are NP-
hard for undirected as well as for directed graphs, the algorithmic treatment by
means of approximation, exact, or parameterized algorithms seems to be signif-
icantly easier in the undirected case where more and better results are known.
For directed graphs, most results so far concern the class of tournaments. A
tournament is a directed graph where between any two distinct vertices there
is exactly one arc. Motivated by applications such as voting systems and rank
aggregation [4, 12, 36], there has recently been much interest in feedback set
problems in tournaments. For instance, the NP-hardness of Feedback Arc

Set in tournaments has recently been addressed by at least four independent
groups of researchers [4, 5, 11, 16]. Here, we contribute new results concerning
the algorithmic tractability of Feedback Arc Set and Feedback Vertex

Set in tournaments and bipartite tournaments.
Table 1 surveys known and new complexity results for feedback set problems

in (bipartite) tournaments.

Approximation algorithms. Concerning polynomial-time approximability, the
following results are known. For FVS in tournaments (FVST), the trivial fac-
tor 3 has been improved to 2.5 [8] whereas for FVS in bipartite tournaments
(FVSBT) the trivial factor 4 has been improved to 3.5 [9], 3 [45], and lastly 2 [50].
Note that the approximation-preserving reduction from Vertex Cover to
FVST [47] together with the inapproximability result for Vertex Cover [18]
shows that it is NP-hard to approximate FVST better than by a factor of 1.360
(see also [37] for the conjectured hardness of a factor-(2 − ǫ) approximation).
In contrast, for FAS in tournaments (FAST), a PTAS is known2 [36], that is,
for any constant ǫ, a polynomial-time factor-(1 + ǫ) approximation algorithm
can be given, albeit with exponential dependency on 1/ǫ. Finally, a factor-4
approximation for FASBT has been shown by van Zuylen [50] using techniques
similar to those by Ailon et al. [4], correcting a previous approach by Gupta [31].

Parameterized algorithmics. As an alternative to approximations, it is reason-
able to study feedback set problems from a parameterized point of view [19,
24, 40] (see also Gutin and Yeo [32] for a survey on parameterized problems on
directed graphs). For instance, in undirected graphs, using iterative compres-
sion [30], it has been shown that a feedback vertex set of size at most k can be

2The corresponding algorithm is impractical and only of theoretical interest.
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found in 37.7k ·nO(1) time [28] and 10.57k ·nO(1) time [17], where n is the num-
ber of graph vertices. The running time has now been lowered to 5k · kn2 [14].
The question whether Feedback Vertex Set on general directed graphs is
fixed-parameter tractable had been famously open for a long time and has only
recently been resolved positively, also using iterative compression [15]; how-
ever, the given algorithm running in 4kk! · nO(1) time incurs a much worse
combinatorial explosion with respect to the parameter k than those algorithms
specialized to tournaments. Restricting the consideration to the class of tour-
naments, Raman and Saurabh [42] have given the first positive result by giving
fixed-parameter algorithms for weighted FVST and weighted FAST running
in 2.415k · nO(1) time. For the unweighted case of FVST, the previously fastest
algorithm is obtained by a reduction to 3-Hitting Set and runs in 2.076k ·nO(1)

time [48]. In a recent manuscript, Alon, Lokshtanov, and Saurabh [6] gave for
FAST one of the rare examples of a subexponential time algorithm with a run-

ning time of 2O(
√

k+log2 k) + nO(1). An algorithm for FVSBT with a running
time of O(3.116k · n4) can also be derived using a 4-Hitting Set algorithm
by Fernau [22]; with the 4-Hitting Set algorithm from Theorem 3.1, we get
a running time of O(3.076k + n4). Recently, an algorithm for FVSBT running
in O(3k · n2 + n3) time was given by Sasatte [44].

An important tool from the FPT toolchest are kernelizations [27]. A ker-
nelization replaces, in polynomial time, an instance by a decision equivalent in-
stance (the kernel) whose size can be bounded by a function of the parameter k,
that is, it will not depend on the original problem size n anymore. Using kernels
for d-Hitting Set [1], one can derive a kernel of O(k2) vertices and O(k3) edges
for FVST, and a kernel of O(k3) vertices and O(k4) edges for FVSBT. A kernel
for FAST is also easy to achieve: If an arc occurs in more than k triangles, it
needs to be deleted. After doing this exhaustively, at most O(k2) vertices can
be left, or the instance is unsolvable.

Feedback Vertex Set in tournaments can also be seen as the problem
of making an antisymmetric relation transitive by omitting a minimum number
of elements. For the related problem of making a symmetric relation transi-
tive by omitting a minimum number of elements, known as Cluster Vertex

Deletion, fixed-parameter tractability results have recently been given [34].
We mention in passing that Raman et al. [43] provided exact (not parame-

terized with respect to k) algorithms solving FAST in O(1.555m) time (where m
is the number of arcs).

Our contributions. We start, in Section 3, with considering the problem d-
Hitting Set, where one has to delete k vertices from a hypergraph that has
m size-d hyperedges, such that all hyperedges are destroyed. d-Hitting Set

is a generalization of FVST and FVSBT, because FVST can be reduced to 3-

Hitting Set by mapping the vertices of the input tournament to vertices of
the hypergraph and mapping triangles to hyperedges. Similarly, FVSBT can
be reduced to 4-Hitting Set. By using iterative compression [30], we show
that solving an instance of d-Hitting Set reduces to solving several instances
of (d − 1)-Hitting Set. This approach results in parameterized algorithms
for 4-Hitting Set and 5-Hitting Set that run in O(3.076k + m) time and
O(4.076k+m) time, respectively, and, thus, are faster than the previously fastest
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known algorithms for these problems.3

In Section 4, we improve the time bound of exactly solving (parameterized)
unweighted FVST to O(2k · n2(log log n + k)). This also demonstrates the ap-
plicability of the elegant iterative compression method in contrast to the more
standard case-distinction based search tree approaches employed by Raman and
Saurabh [42] and Wahlström [48]. Further, this allows us to give an exact (not
parameterized) algorithm for FVST running in O(1.709n) time, answering a
question of Woeginger [49].

For FASBT, iterative compression could so far not be applied. Therefore, in
Section 5 we provide a 3.373k · nO(1)-time algorithm for FASBT which is based
on a novel characterization by forbidden subgraphs.

2. Preliminaries

In this paper we deal with fixed-parameter algorithms that emerge from the
field of parameterized complexity analysis [19, 24, 40]. An instance of a param-
eterized problem consists of a problem instance I and a parameter k. A param-
eterized problem is fixed-parameter tractable if it can be solved in f(k) · |I|O(1)

time, where f is a computable function solely depending on the parameter k,
not on the input size |I|.

A directed graph or digraph D consists of a vertex set V and an arc set E
with n := |V | and m := |E| [7]. Each arc is an ordered pair of vertices. We
consider only digraphs without loops, that is, (v, v) /∈ E for all v ∈ V . We
call a digraph D′ = (V ′, E′) an induced subgraph of D = (V,E) if V ′ ⊆ V and
E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. The subgraph of D induced by a vertex
subset V ′ is denoted by D[V ′]. With reversing an arc (u, v) we mean that we
delete the arc (u, v) from E and insert (v, u) into E. A tournament T = (V,E)
is a digraph where there is exactly one arc between each pair of vertices. A
digraph is a bipartite tournament if its vertex set is the union of two disjoint
sets V1 and V2 such that each arc consists of one vertex from each of V1 and V2

and between each vertex from V1 and each vertex from V2 there is exactly one
arc. A cycle is a sequence of distinct vertices v1, . . . , vs with (vi, vi+1) ∈ E
for all 1 ≤ i < s and (vs, v1) ∈ E. A triangle is a cycle of length 3, a chord
is an arc that connects two vertices of a cycle that are not consecutive in the
cycle. A topological sort of a digraph D = (V,E) is a sequence v1, v2, . . . , vn of
the vertices in V in which each vertex appears exactly once and i < j for each
arc (vi, vj) ∈ E. Clearly, a digraph has a topological sort iff it is acyclic, that
is, it does not contain a cycle.

A hypergraph consists of a vertex set V and a hyperedge set E, where each
hyperedge is a nonempty subset of V .

The problem Feedback Vertex Set (Feedback Arc Set) in tourna-
ments, FVST (FAST) for short, is defined as follows:

Input: A tournament T and a nonnegative integer k.
Task: Find a set F of at most k vertices (arcs) whose deletion results
in an acyclic digraph.

3Similar ideas have been used independently by Fomin et al. [25] for obtaining non-
parameterized exact algorithms for d-Hitting Set.
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The set F is called a feedback vertex set (feedback arc set). When the in-
put digraph is restricted to bipartite tournaments instead of tournaments, we
call the problem Feedback Vertex Set (Feedback Arc Set) in bipartite
tournaments, FVSBT (FASBT) for short.

Since any cycle of length at least four in a tournament has at least one chord
and since any chord of a cycle together with some arcs of the cycle forms a
shorter cycle, we get the following lemma [7].

Lemma 2.1. A tournament is acyclic iff it contains no triangles.

Due to the following lemma from folklore, we can reverse arcs instead of
deleting them when dealing with FAST and FASBT. This is useful because it
allows us to apply feedback arc sets without leaving the class of (bipartite)
tournaments.

Lemma 2.2. Let F be a minimal feedback arc set of a digraph D. Then the
graph D′ formed from D by reversing the arcs in F is acyclic.

Proof. Let D′′ be the graph resulting by deleting the arcs of F from D, and
let v1, . . . , vn be the topological sort of the vertices of D′′. Due to the min-
imality of F , every edge (vi, vj) ∈ F has i > j—otherwise, inserting (vi, vj)
into D′′ would not create a cycle, contradicting the minimality of F . Inserting
all edges (vj , vi) with (vi, vj) ∈ F into D′′, therefore, results in a cycle-free
graph D′.

3. Iterative Compression for Hitting Set

We now show how to solve Hitting Set, which generalizes FVST and
FVSBT, by using iterative compression. This also serves to introduce the tech-
nique (see also [30] for a recent survey on iterative compression) and further
produces the currently fastest algorithms for 4-Hitting Set and 5-Hitting

Set. As introductory example, we use 3-Hitting Set. To emphasize the
similarity to the graph problems, we formulate it as a hypergraph modification
problem.

3-Hitting Set

Instance: A hypergraph G = (V,E) with |e| = 3 for all e ∈ E and an
integer k ≥ 0.
Question: Is there a hitting set X ⊆ V with |X| ≤ k, that is, a set of
vertices whose deletion removes all hyperedges?

Here, deleting a vertex implies also removing all hyperedges that contain this
vertex. 3-Hitting Set is NP-complete [26]. There is a simple 3-approximation
for the minimization version of the problem (repeatedly take all three vertices of
a hyperedge); it has been conjectured that this approximation factor cannot be
improved [37]. Note that the variant 2-Hitting Set is equivalent to the NP-
complete Vertex Cover problem. 3-Hitting Set can be solved in O(3km)
time by a simple search tree algorithm: choose any hyperedge {v1, v2, v3} ∈ E
and branch into the three cases v1 ∈ X, v2 ∈ X, and v3 in X. By case distinction
and careful analysis, this has been improved in a series of results to O(2.270k+m)
[41], then O(2.179k + m) [21, 22], and finally O(2.076k + m) [48]. A kernel of
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IterativeCompression(G = (V,E))
1 V ′ ← ∅
2 X ← ∅
3 for each v ∈ V :

4 V ′ ← V ′ ∪ {v}
5 X ← X ∪ {v}
6 X ← Compress(G[V ′],X)
7 return X

Figure 1: Pseudo-code for iterative compression, using the compression routine Compress.
The function call Compress(G[V ′], X) returns a hitting set for G[V ′] that is smaller than the
hitting set X, if possible.

size O(k3) is known [41], which has recently been improved to O(k2) vertices
and O(k3) edges [1].

The central idea of iterative compression is to use a compression routine, that
is, an algorithm that, given a problem instance and a solution, either calculates a
smaller solution or proves that the given solution is of minimum size. The most
obvious way to employ a compression routine is to start with an approximate
solution and then use the compression routine until no further compression is
possible. However, since the running time of the compression routine depends
exponentially on the size of the solution to compress, it is faster to build up
the graph vertex-by-vertex while always keeping a minimal solution. This is
illustrated in the pseudo-code in Figure 1.

We start with V ′ = ∅ and X = ∅; clearly, X is a minimum hitting set
for G[V ′]. In lines 4 and 5, we add one vertex v /∈ V ′ from V to both V ′ and X.
Then X is still a hitting set for G[V ′], although possibly not a minimum one.
We can, however, obtain a minimum one by applying our compression routine.
Here, the compression routine Compress takes a hypergraph G and a hitting
set X for G, and returns a smaller hitting set for G if there is one; otherwise, it
returns X unchanged. Therefore, it is a loop invariant that X is a minimum-size
hitting set for G[V ′]. Since eventually V ′ = V , we obtain an optimal solution
for G once the algorithm returns X.

Note that we defined a compression routine as a function that returns a
smaller solution, but not necessarily a minimum one. This suffices here, because
the hitting set X ∪ {v} to be compressed can be larger by at most one than an
optimal hitting set X ′ for G[V ′ ∪ {v}]; this is because X ′ is also a hitting set
for G[V ′], and cannot be smaller than the minimum hitting set X.

It remains to describe the compression routine. The basic idea, which is
shared with most other known iterative compression algorithms [30], is to reduce
the compression problem to a disjoint compression problem:

Definition 3.1. A disjoint compression routine is an algorithm that, given a
problem instance and a solution S, either calculates a smaller solution that is
disjoint from S or proves that this is not possible.

The reason for working with a disjoint compression routine is that it gives us
extra structure to work with: Not only do we know that G[V \S] is hyperedge-
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X

X ′DS

S′

G

Figure 2: Partition of X

Compress(G,X)
1 for each S ⊆ X:

2 D ← X \ S
3 if G[S] is a hyperedge-free graph:
4 G′ ← G[V \D]
5 S′ ← CompressDisjoint(G′, S)
6 if |S′| < |S|:
7 return (X \ S) ∪ S′

8 return X

Figure 3: Pseudo-code for Compress. The function
call CompressDisjoint(G′, S) returns a hitting set
for G′ that is smaller than the hitting set S, if pos-
sible, and disjoint from S.

S (a)

(b) (c)
(d)

Figure 4: Hyperedges in disjoint compression for 3-Hitting Set. Black circles are vertices,
white circles connected to three vertices are hyperedges.

free, but also that G[S] is hyperedge-free, because otherwise we can immediately
claim that no compression is possible, since we are not allowed to delete vertices
from S.

For the transformation from compression to disjoint compression, consider
a smaller solution X ′ as a modification of the known solution X. It will retain
some vertices D from X and replace the other vertices S with fewer vertices S′

(Figure 2). The idea (see Figure 3) is to try by brute force all 2|X| possibilities
to partition X into S and D (line 1). If G[S] still has hyperedges, then there
is no solution disjoint from S, and we can skip this partition (line 3). Since we
decided to keep all vertices of X in the solution except for those in S, we can
immediately get rid of the other vertices, that is, the vertices in D (line 4). We
have thus gained the disjointness assumption at a cost of a factor of 2|X| = O(2k)
in the running time. It now remains to find in G[V \D] an optimal hitting set
that is disjoint from S, which is done by the function CompressDisjoint.

To implement CompressDisjoint, we examine possible configurations of
hyperedges (Figure 4). Configuration (a) is not possible because of the check in
line 3. Configuration (b) is not possible either, because S is a hitting set for G′.
If we encounter configuration (c), we can immediately delete the single vertex
that is not in S, since there is no other way to get rid of such a hyperedge. So
the only remaining possibility is (d): each remaining hyperedge has exactly one
vertex in S and two vertices in V \ S. Since we are not allowed to delete any
vertex in S, we might as well omit them. This leaves us with a number of 2-
element edges, the task still being to delete vertices to get rid of all edges. This
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is exactly the Vertex Cover problem. For Vertex Cover, many fast pa-
rameterized algorithms exist, which we can use to solve the remaining instance.
We arrive at the following theorem.

Proposition 3.1. 3-Hitting Set can be solved in O(2.274k · kn2) time by
using iterative compression.

Proof. The data reduction in CompressDisjoint (removal of edges with two
vertices in S) can be executed in O(kn) time, if we do it incrementally and
enumerate subsets of X in a way such that at each step only membership of one
vertex changes; this can be done using a Gray code [38, Section 7.2.1.1]. More
precisely, to remove all edges with two vertices in S, we just modify the output
of the data reduction performed in the previous call of CompressDisjoint:
Since, compared to the previous call of CompressDisjoint, only one vertex v
has moved from V \ S to S or from S to V \ S, we check for each of the at
most k neighbors u ∈ S of v and each of the at most n neighbors w ∈ V \S of v
whether the hyperedge {u, v, w} can be eliminated or whether it was eliminated
in the previous call of CompressDisjoint and has to be re-inserted now.

Then, the remaining task is to solve a Vertex Cover instance with at
most n vertices and m edges. Vertex Cover with a cover size of at most k′

can be solved in O(1.274k′
+ k′n) time [13]. We thus can execute Compress in

O(
∑

S⊆X(1.274|S| + |S|n)) time. Using
∑k

i=0

(

k
i

)

ci = (c + 1)k for any c and the

fact that |S| is bounded by k + 1, this gives an O(
∑k+1

i=0

(

k+1
i

)

(1.274i + in)) =
O(2.274k · kn) time bound. The compression routine is called at most n times,
giving an overall running time of O(2.274k · kn2) as claimed.

Using a kernelization [1, 41] and the fact that the rounding of the exponential
base allows us to omit polynomial factors of k, we can even claim a running time
of O(2.274k + m) (although this borders on abuse of the Big O notation).

The running time of this iterative compression algorithm is already com-
petitive with that of the algorithm of Niedermeier and Rossmanith [41], which
runs in O(2.270k + m) time; however, it is not as fast as the best known 3-

Hitting Set algorithm by Wahlström [48] running in O(2.076k + m) time.
Still, it might be a useful approach to solving 3-Hitting Set in practice, in
particular since except for the Vertex Cover subroutine, it is very simple,
and high-performance Vertex Cover implementations have been presented
(see, for instance, Abu-Khzam et al. [3] and Felner et al. [20]).

Furthermore, we can in the same way use iterative compression to solve 4-

Hitting Set using a 3-Hitting Set algorithm, or more generally d-Hitting

Set using iterative compression and a (d − 1)-Hitting Set algorithm. If we
use the 3-Hitting Set algorithm by Wahlström [48], we obtain the following
theorem.

Theorem 3.1. 4-Hitting Set can be solved in O(3.076k + m) time, and 5-

Hitting Set can be solved in O(4.076k + m) time.

These algorithms are slightly faster than the previously fastest known by
Fernau [22] running in O(3.116k +m) and O(4.079k +m) time, respectively. For
d-Hitting Set with d > 5, this approach does not yield new records anymore;
further, we have an increasing polynomial overhead with growing d, since the
running time for d-Hitting Set is more precisely O((d − 0.924)knd−3 + (d −
2)knd−3m.
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4. Iterative Compression for Feedback Vertex Set in Tournaments

We use the same overall scheme as for 3-Hitting Set. To make the task of
looking for a smaller feedback vertex set for a tournament T easier, we would
like to restrict our search to feedback vertex sets that are disjoint from a given
one. This is the same approach as used in Section 3 and most other iterative
compression algorithms. We can achieve this in the same way as for 3-Hitting

Set (see Figure 3), that is, by a brute-force enumeration of all O(2|X|) pos-
sibilities to partition the given feedback vertex set X into two vertex sets S
and X \ S. For each partition, we then look only for solutions that contain
all of X \ S (they can immediately be deleted from the tournament), but none
of S. Further, we can omit all partitions where T [S] is not cycle-free, since
we determined none of the vertices in S would be deleted. Therefore, all that
remains is to deal with the following problem.

FVST Disjoint Compression

Instance: A tournament T = (V,A) and a subset S ⊆ V such that T [S]
and T [V \ S] are acyclic.
Task: Find a set S′ ⊆ V \ S with |S′| < |S| such that T [V \ S′] is
acyclic.

Up to this point, the algorithm is analogous to the iterative compression
algorithms for general directed Feedback Vertex Set [15] and undirected
Feedback Vertex Set [17, 28]. The core part of the compression routine,
however, is completely different; in particular, we will be able to solve the
remaining task of finding a smaller feedback vertex set that is disjoint from the
given one S in polynomial time, whereas Chen et al. [15] still require exponential
(in k) time for this task in the case of Feedback Vertex Set on general
directed graphs, as well as Dehne et al. [17] and Guo et al. [28] when solving
Feedback Vertex Set on undirected graphs.

Consider a FVST Disjoint Compression instance (T, S). As mentioned,
both T [S] and T [V \ S] are acyclic and thus have a topological sort. Then,
the topological sort of a maximum acyclic subtournament of T containing all
of S can be thought of as resulting from inserting a subset of V \ S into the
topological sort of S. On the one hand, the order of the inserted subset must not
violate the topological sort of T [V \ S]. On the other hand, we can achieve by
a data reduction rule that for every v ∈ V \S, the subtournament T [S ∪ {v}] is
acyclic and therefore v has a “natural” position within the topological sort of S.
We then obtain the maximum acyclic subtournament as the longest common
subsequence of the topological sort of T [V \ S] and V \ S sorted by natural
position within S. The details follow.

Our approach is based on the subroutine displayed in Figure 5. First we ap-
ply data reduction to the instance: whenever there is a triangle with two vertices
in S, we can only get rid of this triangle by deleting the third vertex (lines 3–5).
After applying this reduction rule exhaustively, for any v ∈ V \ S, the subtour-
nament T [S ∪ {v}] clearly does not contain triangles anymore and therefore is
acyclic by Lemma 2.1. This means that we can insert v at some point in the
topological sort s1, . . . , s|S| of S without introducing back arcs (that is, arcs
pointing from a higher indexed vertex to a lower indexed vertex in the sort).
Since T is a tournament, there is thus some integer p[v] such that for i < p[v],
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Input: Tournament T = (V,A) and a feedback vertex set S for T .
Output: A minimum feedback vertex set F for T with F ∩ S = ∅.
1 s1, . . . , s|S| ← topological sort of T [S]
2 R← ∅
3 while there is a triangle u, v, w with u, v ∈ S and w ∈ V \ S:

4 R← R ∪ {w}
5 T ← T [V \ {w}]
6 for each v ∈ V \ S:

7 p[v]← min({i | (v, si) ∈ A} ∪ {|S|+ 1})
8 L← topological sort of T [V \ S]
9 P ← V \ S sorted by p, with position in L as tie-breaker

10 Y ← vertices in a longest common subsequence of L and P
11 return R ∪ ((V \ S) \ Y )

Figure 5: Algorithm for FVST Disjoint Compression

s1 s2 sp[v]−1 sp[v] sp[v]+1 s|S|

v

· · · · · ·

· · · · · ·

S

V \ S

Figure 6: Illustration of equivalence (1). For clarity, only some of the arcs within the acyclic
subtournaments T [S] and T [V \ S] are shown.

there is an arc from si to v, and for i ≥ p[v], there is an arc from v to si

(Figure 6):
(v, si) ∈ A ⇐⇒ i ≥ p[v]. (1)

We calculate p in lines 6–7: when we encounter the first si in the topological
sort of S where (v, si) ∈ A, we can insert v before si; if there is no such si, we
set p[v] to |S|+ 1, and (1) still holds.

We now construct a sequence P from p (line 9), where vertices from V \S that
are positioned by p between the same two vertices of S are ordered according
to their relative position in the topological sort of T [V \S]. Clearly, any acyclic
subtournament of T containing all of S must have a topological sort where the
vertices from V \ S occur in the same order as in P . The same holds for the
topological sort L of T [V \ S], which is calculated in line 8. This leads to the
following lemma.

Lemma 4.1. After line 9 of the algorithm in Figure 5, T is acyclic iff the
sequences L and P are equal.

Proof. “⇒”: If L and P are not equal, then there are v, w ∈ V \S with (v, w) ∈ A
but p[v] > p[w]. Then, by (1), we have (w, sp[w]) ∈ A and (v, sp[w]) /∈ A. Since T
is a tournament, (v, sp[w]) /∈ A implies (sp[w], v) ∈ A, and, therefore, T contains
the cycle v, w, sp[w].
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s1 s2 s3 s4

v1 v2 v3 v4 v5 v6

2 1 3 2 4 3p

s1 s2 s3 s4

2 3 4

v1 v3 v5

S

V \ S

T

Figure 7: Example for the subroutine in Figure 5. For clarity, only some of the arcs within the
acyclic subtournaments T [S] and T [V \S] are shown. Left: Tournament T after data reduction
with L = v1, v2, v3, v4, v5, v6 and P = v2, v1, v4, v3, v6, v5. A longest common subsequence
is v1, v3, v5, yielding the acyclic graph shown on the right.

“⇐”: By Lemma 2.1, it suffices to look for triangles to decide whether T is
acyclic. Since T [S] and T [V \ S] are acyclic and we destroyed all triangles with
two vertices in S, there can only be triangles with exactly two vertices in V \S.
If L and P are equal, then for all v, w ∈ V \S with (v, w) ∈ A we have p[v] ≤ p[w].
Then by (1), there cannot be any si with (w, si) ∈ A and (si, v) ∈ A, and there
can be no triangle in T .

With the same justification, the statement of Lemma 4.1 holds for induced
subgraphs of T and the corresponding sequences L and P :

Corollary 4.1. After line 9 of the algorithm in Figure 5, for any subset Y of
T ’s vertices it holds that T [Y ] is acyclic iff the vertices of Y appear in a common
subsequence of L and P .

Proof. The corollary follows immediately from the proof of Lemma 4.1, because
deleting a vertex v ∈ V \S from T affects L and P only insofar as v disappears
from L and P .

According to Corollary 4.1, the cheapest way to make T acyclic by vertex
deletions can be obtained by finding the cheapest way to make L and P equal
by vertex deletions; this is exactly the complement of the longest common sub-
sequence of L and P . We then obtain the desired feedback vertex set for T by
adding the vertices of this complement to those of the set R, which contains
the vertices that were determined to be in any feedback vertex set in the re-
duction step (lines 10–11). Figure 7 shows an example for the execution of the
subroutine from Figure 5.

In summary, the subroutine from Figure 5 is correct and can be used to solve
Feedback Vertex Set in tournaments by iterative compression as described
at the beginning of this section.

Theorem 4.1. Using iterative compression, Feedback Vertex Set in tour-
naments can be solved in O(2k · n2(log log n + k)) time.

Proof. We have shown how to solve Feedback Vertex Set in tournaments
using iterative compression. It remains to analyze the running time. First we
examine the subroutine from Figure 5. Topological sort (line 1) can be easily
done in O(|S|) = O(k) time. Finding triangles in line 3 can be done in O(nk)
time: for every v ∈ V \S, we iterate over the topological sort of S; if we encounter
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a vertex si with (v, si) ∈ A and later a vertex sj with (sj , v) ∈ A, we have a
triangle as desired. Line 8 needs O(n) time, and by using bucket sort, line 9
can also be done in O(n) time. Since L and P are permutations of each other,
finding a longest common subsequence reduces to finding a longest increasing
subsequence, which can be done in O(n log log n) time [35]. In summary, the
subroutine can be executed in O(n(log log n + k)) time. In the compression
routine, the subroutine is called O(2k) times, once for each partition of X into
two subsets. The compression routine itself is called n times when inductively
building up the graph structure. In total, we have a running time of O(2k ·
n2(log log n + k)).

Using the O(k2)-vertex 3-Hitting Set kernelization [1], we arrive at the
following running time.

Theorem 4.2. Using iterative compression, Feedback Vertex Set in tour-
naments can be solved in O(2k · k5 + n3) time.

Proof. All that the 3-Hitting Set kernelization of Abu-Khzam [1] does is to
delete vertices that have to be deleted in any case (in other words, it yields
an induced problem kernel, see [2]); therefore, we can easily transform the ker-
nelized 3-Hitting Set instance that represents the set of triangles back into
a Feedback Vertex Set instance. The kernelization takes O(n3) time and
leaves O(k2) vertices, giving a running time of O(n3)+O(2k ·k4(log log k2+k)) =
O(2k · k5 + n3).

We now show how to extend our results to the weighted case with rational
weights ω ≥ 1:

Weighted Feedback Vertex Set in tournaments
Instance: A tournament T = (V,A), a vertex weight function ω : V →
[1,∞), and a number t ≥ 0.
Question: Is there a subset X ⊆ V with

∑

v∈X ω(x) ≤ t such that
deleting all vertices in X from G results in a directed acyclic graph?

Note that for arbitrary weights, in particular, with weights below 1 allowed,
the problem is not fixed-parameter tractable unless P = NP, since otherwise we
could solve FVST in polynomial time by scaling down the weights sufficiently.

We modify our algorithm solving unweighted FVST only in the last iter-
ation of the iterative compression, where we have a feedback vertex set X of
size at most k + 1 for T . Clearly, we can still enumerate all O(2k) possibilities
of which part S to keep and which part to omit from X to get a minimum-
weight solution X ′. The data reduction (Figure 5 lines 3–5) is also still correct,
and Lemma 4.1 and Corollary 4.1 hold. Therefore, again, the cheapest way to
make T acyclic by vertex deletions can be obtained by finding the cheapest way
to make L and P equal by vertex deletions; therefore, we need a maximum-
weight common subsequence of L and P . Since L and P are permutations of
each other, this reduces to finding a maximum-weight increasing subsequence,
which in turn reduces to finding a maximum-weight independent set in a per-
mutation graph: A permutation graph is a graph that has an intersection model
consisting of straight lines (one per vertex) between two parallels. In our case,
the permutation graph to be constructed has one vertex for every element of L;
its edges are obtained by writing the two sequences L and P on two parallel
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horizontal lines, one below the other, and connecting every element of L with its
counterpart in P by a straight line. If two lines cross, the corresponding vertices
in the graph are connected by an edge. A maximum-weight independent set in
a permutation graph can be found in O(n log log n) time [10]. Further, since
a weighted optimal solution needs at least as many vertices as an unweighted
optimal solution, and each vertex weighs at least 1, we have t ≥ k. We arrive
at the following result.

Theorem 4.3. Weighted Feedback Vertex Set in tournaments can be
solved in O(2t · n2(log log n + t)) time.

Woeginger [49] noted that by combining an algorithm by Schwikowski and
Speckenmeyer [46] that enumerates all (inclusion-)minimal feedback vertex sets
in a directed graph with polynomial delay with the fact that a tournament has
at most 1.717n minimal feedback vertex sets [39], one obtains an algorithm that
solves FVST in O(1.717n) time. He asks whether this bound can be improved.
One can sometimes gain fast exact algorithms by using an FPT algorithm for
small parameter values and brute force only for large parameter values [43]. This
approach can be applied here. We try all possible parameter values k = 0, . . . , n;
if k ≤ λn, we use the 2k ·nO(1) algorithm of Theorem 4.1, and otherwise, we try
by brute force all

(

n
k

)

possible solutions. The running time of the brute force

approach is maximum for λ = 1/2, since
(

n
n/2

)

≈ 2n; therefore, we can improve

the trivial 2n bound if λ > 1/2. The optimal λ is attained when 2λn =
(

n
λn

)

,
which gives (asymptotically) λ ≈ 0.773. Thus, we can answer Woeginger’s
question affirmatively.

Theorem 4.4. Feedback Vertex Set in tournaments can be solved
in O(1.709n) time.

5. Search Tree for Feedback Arc Set in Bipartite Tournaments

Raman and Saurabh [42] have shown that if a tournament T does not con-
tain a particular four-vertex tournament denoted by F1, then the cycles in T
are pairwise vertex-disjoint. Using this, their O(2.415k · n2.376)-time algorithm
solves FAST in a two-phase manner: First, it uses a depth-bounded search tree
approach to get rid of all cycles contained in subtournaments F1 appearing in T
by reversing at most k arcs; this also destroys all subtournaments F1 in T . In the
second phase, in each tournament output by the search tree it destroys in poly-
nomial time all remaining, pairwise disjoint triangles by reversing an arbitrary
arc in each triangle. If after these two phases there is an acyclic tournament
with at most k arcs reversed, then T has a feedback arc set with size at most k.

Following the same approach, we derive a fixed-parameter algorithm for
Feedback Arc Set in bipartite tournaments (FASBT). In contrast to the
algorithm for FAST [42], which needs only one simple-structured subtourna-
ment F1 for characterizing instances that can be solved in polynomial time,
here we need two subtournaments and a more involved branching strategy. We
use the following lemma, which can immediately be seen by arguing analogously
as in the case of Lemma 2.1.

Lemma 5.1. A bipartite tournament is acyclic iff it contains no cycle of length
four.
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Figure 8: Forbidden subgraphs for bipartite tournaments where all cycles of length four are
disjoint. The color of the vertices describes the bipartition.
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v4

v5
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Figure 9: All possibilities for how two length-four cycles in a bipartite tournament can share at
least one vertex. Left: Two cycles v1, v2, v3, v4 and v1, v5, v6, v7 sharing one vertex. Indepen-
dent from the directions of the dashed arcs, one can always find an induced B1. Second from
left: Two cycles v1, v2, v3, v4 and v1, v2, v5, v6 sharing two consecutive vertices. Depending
on the directions of the dashed arcs, one can find an induced B1 or B2. Second from right:
Two cycles v1, v2, v3, v4 and v1, v5, v3, v6 sharing two non-consecutive vertices. One can find
an induced B1. Right: Two cycles v1, v2, v3, v4 and v1, v2, v3, v5 sharing three vertices. One
can find an induced B1.

Note that we cannot use Lemma 5.1 solve FASBT by first reducing the prob-
lem to 4-Hitting Set (with hyperedges corresponding to length-four cycles and
vertices corresponding to arcs) and then using the algorithm for 4-Hitting Set

from Section 3. The reason is that reversing an arc could create new length-four
cycles.

By Lemma 5.1, in order to derive a forbidden subgraph characterization for
bipartite tournaments where all cycles of length four are disjoint, we consider
two length-four cycles in a bipartite tournament. If they are not vertex-disjoint,
then they have one, two, or three common vertices. These three possibilities
lead to bipartite tournaments which contain B1 or B2 shown in Figure 8 as
induced subgraph. The following lemma strengthens this finding.

Lemma 5.2. If a bipartite tournament B contains neither B1 nor B2 (shown
in Figure 8) as an induced subgraph, then all cycles in B have length four and
are pairwise vertex-disjoint.

Proof. With Lemma 5.1, we first consider length-four cycles. By distinguishing
three cases, namely two length-four cycles sharing one, two, and three vertices,
respectively, and several subcases, one can show that a {B1, B2}-free bipartite
tournament contains no two length-four cycles having a common vertex, see
Figure 9. For example, if a cycle v1, v2, v3, v4 shares two vertices v1, v3 with a
cycle v1, v5, v3, v6, then there is a B1 with a = v1, b = v2, c = v3, d = v4, d

′ = v6.
Moreover, observe that in a bipartite tournament B, a subgraph of B induced
by the vertices lying on a cycle with length greater than four contains several
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Branching for B1:

{(a, b)},
{(b, c)},
{(c, d), (c, d′)},
{(c, d), (d′, a)},
{(d, a), (c, d′)},
{(d, a), (d′, a)}

Branching for B2:

{(a, a′), (b, b′)},
{(a, a′), (c, c′)},
{(b, b′), (c, c′)},
{(a, a′), (b′, c)},
{(a, a′), (c′, b)},
{(b, b′), (a′, c)},

{(b, b′), (c′, a)},
{(c, c′), (a′, b)},
{(c, c′), (b′, a)},
{(a′, b), (a′, c), (b′, c)},
{(a′, b), (a′, c), (c′, b)},
{(a′, b), (c′, a), (b′, c)},

{(a′, b), (c′, a), (c′, b)},
{(b′, a), (a′, c), (b′, c)},
{(b′, a), (a′, c), (c′, b)},
{(b′, a), (c′, a), (b′, c)},
{(b′, a), (c′, a), (c′, b)}

Figure 10: The branching for destroying induced subgraphs B1 and B2. In each subcase of
the branching, all edges of one of the edge sets displayed in the figure are reversed.

length-four cycles which are not vertex-disjoint. Thus, a {B1, B2}-free bipartite
tournament contains no cycle with a length greater than four. This completes
the proof.

Based on Lemma 5.2, our algorithm solving FASBT has the same two phases
as the algorithm by Raman and Saurabh [42], namely a search tree algorithm de-
stroying all cycles contained in the induced subgraphs B1 and B2 from Figure 8
and a polynomial-time second phase getting rid of the remaining, vertex-disjoint
cycles.

Theorem 5.1. Feedback Arc Set in bipartite tournaments of n vertices
with k arc deletions can be solved in O(3.373k · n3) time.

Proof. For destroying the cycles in B1, the search tree algorithm makes a branch-
ing into six subcases, namely, reversing (a, b), reversing (b, c), reversing (c, d)
and (c, d′), reversing (c, d) and (d′, a), reversing (d, a) and (c, d′), and revers-
ing (d, a) and (d′, a). For each reversed arc, the parameter k is decreased by
one. The size of depth-bounded search trees can be estimated using branch-
ing vectors [40]. The branching vector, which indicates how many arcs are
reversed in every branch, here is (1, 1, 2, 2, 2, 2), corresponding to a search tree
size of O(3.24k). Dealing with B2, one branches into 17 subcases and, in each
subcase, reverses two or three arcs (see Figure 10). The observation yielding
the correctness of the branching is that a B1 contains two length-four cycles,
namely a, b, c, d and a, b, c, d′, and that a B2 contains three length-four cycles,
namely a, a′, b, b′ and a, a′, c, c′ and b, b′, c, c′, which all have to be destroyed.

The worst-case running time is determined by the branching for B2, with a
search tree size of O(3.373k).

Finding one of B1 and B2 can be done in O(n3) time by searching for two
non-disjoint cycles of length four; the subgraph induced by the vertices of these
cycles contains a B1 or B2, which can be found in constant time in this subgraph.
The two non-disjoint cycles can be found as follows: First, find a cycle C of
length 4 in O(n2) time: start with a cycle C of arbitrary length, which can
be found in O(n + m) time with a depth first search, and repeatedly decrease
its length by taking an arbitrary chord of C and considering the cycle formed
by this chord and some of the edges of C. Second, search for a length-4 cycle
that has at least one vertex in common with the length-4 cycle C. To find a
length-4 cycle that has exactly one vertex in common with C, construct, for
every vertex v ∈ C, a graph B′ by inserting a copy v′ of v into B, and search
in O(n + m) time for a path from v to v′ in B′[(V \ C) ∪ {v, v′}]. To find a
length-4 cycle that has two or three vertices in common with C, try for i = 2, 3
every combination of i vertices from C and 4− i vertices from V \C and check
in constant time whether these four vertices form a cycle. If no cycle of length 4
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can be found that is non-disjoint from C, the search for a B1 or B2 is continued
in B[V \ C]; hence, at most ⌊n/4⌋ cycles C have to be considered to find a B1

or a B2.
When destroying vertex-disjoint cycles in the second phase of the search tree

algorithm, reversing arcs on cycles does not generate new cycles because, due
to Lemma 2.2, reversing an arc is “equivalent” to deleting an arc and because,
due to Lemma 5.2, there is no cycle of length greater than four after the first
phase of the search-tree algorithm. Thus, the second phase of the algorithm
can be executed in O(n3) time by repeatedly searching for a length-4 cycle
and reversing an arbitrary arc of each found cycle. Note that there can be at
most ⌊n/4⌋ vertex-disjoint cycles.

6. Conclusion

In this work, we presented improved fixed-parameter algorithms for Feed-

back Vertex Set in tournaments, 4-Hitting Set, and 5-Hitting Set. The
algorithm for FVST also implies an exact algorithm for this problem running
in O(1.709n), answering a question of Woeginger [49]. Herein, the iterative com-
pression technique plays a central role. Finally, we gave a size-O(3.373k) search
tree algorithm for Feedback Arc Set in bipartite tournaments, based on a
new forbidden subgraph characterization for bipartite tournaments.

A natural research topic resulting from our work is to examine the applicabil-
ity of the iterative compression technique to Feedback Arc Set in (bipartite)
tournaments, as we did here for the vertex version. The most difficult part might
be to design an iteration process. The iterative buildup of the input graph by
adding vertices or edges one-by-one seems infeasible for the arc version: Adding
vertices cannot guarantee the size of the solution to be compressed, whereas
adding edges destroys the tournament property. Another interesting research
line would be to improve the problem kernel size of all these feedback set prob-
lems. Nowadays, only polynomial-size kernels are known. Linear-size kernels
would be very desirable from an applied point of view.
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