
Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Approximation and Fixed-Parameter Algorithms for

Consecutive Ones Submatrix Problems✩

Michael Dom, Jiong Guo1, Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, 07743 Jena, Germany.

{michael.dom,jiong.guo,rolf.niedermeier}@uni-jena.de

Abstract

We develop an algorithmically useful refinement of a forbidden submatrix char-
acterization of 0/1-matrices fulfilling the Consecutive Ones Property (C1P).
This characterization finds applications in new polynomial-time approximation
algorithms and fixed-parameter tractability results for the NP-hard problem to
delete a minimum number of rows or columns from a 0/1-matrix such that the
remaining submatrix has the C1P.

Key words: consecutive ones property, circular ones property, forbidden
submatrix characterization, NP-hard problem, fixed-parameter tractability,
exact algorithms

1. Introduction

A 0/1-matrix has the Consecutive Ones Property (C1P) if there is a permutation
of its columns, that is, a finite series of column swappings, that places the 1s
consecutive in every row2. The C1P of matrices has a long history and it plays an
important role in combinatorial optimization, including application fields such
as scheduling [5, 23, 24, 46], information retrieval [30], railway optimization [33,
34, 39], or computational biology [1, 2, 3, 7, 38] (see also [9] for a recent survey).
It is well-known that it can be decided in linear time whether a given 0/1-matrix
has the C1P, and, if so, also a corresponding permutation can be found in linear
time [6, 17, 20, 25, 26, 29, 32, 35].3

✩Preliminary versions of parts of this paper appeared in the proceedings of the 4th Annual
Conference on Theory and Applications of Models of Computation (TAMC ’07), held in
Shanghai, China, May 2007 [10], and in the proceedings of the 3rd Algorithms and Complexity
in Durham (ACiD ’07) Workshop, held in Durham, UK, September 2007 [11].

1Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

2The C1P can be defined symmetrically for columns; we focus on rows here.
3The certifying algorithm of McConnell [32] decides whether a given 0/1-matrix has the

C1P or not. If it does not have the C1P, then the algorithm generates a “certificate”, that is,

Preprint submitted to Elsevier June 26, 2009

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

The C1P being a desirable property that often leads to efficient algorithms,
the natural problem arises what to do if a given matrix does not have the
C1P. As a consequence, there has been recently increased interest in matrix
modification problems that deal with the transformation of a given 0/1-matrix
into a 0/1-matrix fulfilling the C1P [22, 42]. The following three minimization
problems show up naturally in this context:

• Find a minimum-cardinality set of columns to delete such that the re-
sulting matrix has the C1P. This problem is referred to as Min-COS-C

(“Consecutive Ones Submatrix by Column Deletions”).

• Find a minimum-cardinality set of rows to delete such that the resulting
matrix has the C1P. This problem is referred to as Min-COS-R (“Con-
secutive Ones Submatrix by Row Deletions”).

• Find a minimum-cardinality set of 1-entries in the matrix that shall be
flipped (that is, replaced by 0-entries) such that the resulting matrix has
the C1P. This problem is referred to as Min-CO-1E (“Consecutive Ones
by Flipping 1-Entries”).

Unfortunately, even for sparse matrices with few 1-entries these quickly turn
into NP-hard problems [22, 42]. In this paper, we further explore the algo-
rithmic complexity of these problems, providing new algorithmic results. To
this end, based on a “forbidden submatrix characterization” for the C1P due to
Tucker [44], our main technical result is a structural theorem dealing with the
selection of particularly useful forbidden submatrices. Before we describe our
results in more detail, we introduce some notation.

We call a matrix that results from deleting some rows and columns from
a given matrix M a submatrix of M . Whereas an m × n-matrix is a matrix
having m rows and n columns, the term (x, y)-matrix will be used to denote a
matrix that has at most x 1s per column and at most y 1s per row. (This nota-
tion was used in previous work [22, 42].) With x = ∗ or y = ∗, we indicate that
there is no upper bound on the number of 1s in columns or in rows, respectively.

Previous work [21, 22, 42] considered the “dual versions” Max-COS-C and
Max-COS-R of the problems Min-COS-C and Min-COS-R. These maximiza-
tion variants ask for a submatrix M ′ of a given matrix M such that M ′ has the
C1P and the number d′ of the columns (rows) of M ′ is maximized. The NP-
hardness of Max-COS-C was already mentioned by Garey and Johnson [18],
however, Hajiaghayi and Ganjali [21, 22] observed that in Garey and John-
son’s monograph [18] the reference for the NP-hardness proof of Max-COS-C

is not correct—indeed, the referenced proof shows the NP-hardness of Max-

COS-R on (3, 2)-matrices. Then, Max-COS-C has been shown NP-hard for
(2, 4)-matrices by Hajiaghayi and Ganjali [22]. Tan and Zhang showed that
for (2, 3)- or (3, 2)-matrices Max-COS-C remains NP-hard [42]. Moreover, it

a small (compared to the size of the input matrix) proof that can be verified by a “fast and
uncomplicated” polynomial-time algorithm (for more details about such certificates see [31]).

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

turned out that there exists no polynomial-time constant-factor approximation
algorithm for Max-COS-C on (∗, 2)-matrices unless P=NP [42]. The reduction
given by Tan and Zhang [42] also shows that Max-COS-C on (∗, 2)-matrices is
W[1]-hard, that is, presumably fixed-parameter intractable, with respect to the
parameter “d′ = number of columns of M ′”.4 On the positive side, Tan and
Zhang [42] provided polynomial-time approximability results for the sparsest
NP-hard cases of Max-COS-C, that is, for (2, 3)- and (3, 2)-matrices: Re-
stricted to (3, 2)-matrices, Max-COS-C can be approximated within a factor
of 0.5; for (2, ∗)-matrices, it is approximable within a factor of 0.5; for (2, 3)-
matrices, the approximation factor is 0.8. Concerning the minimization versions
of the problems, we are only aware of fixed-parameter algorithms and problem
kernels for the graph problems 2-Layer Planarization [13, 14, 40, 41] and
Linear Arrangement by Deleting Edges [15], which are equivalent to
Min-COS-C on (2, ∗)-matrices without identical columns and to Min-COS-R

on (∗, 2)-matrices without identical rows, respectively. Finally, hardness results
have been achieved for the related problem of obtaining the C1P by flipping
0-entries [18, 47], and a polynomial-time algorithm is known for the problem
of obtaining the C1P by flipping arbitrary entries in a matrix with a constant
number of rows or columns [37].

While we use d′ to denote the number of columns or rows of the desired
submatrix M ′ when considering the maximization problems Max-COS-C and
Max-COS-R, let d denote the number of columns or rows to be deleted from
the matrix M to get the submatrix M ′ having the C1P in the case of the mini-
mization problems Min-COS-C and Min-COS-R. Besides the above mentioned
structural theorem, we show the following main algorithmic results.

1. For any constant ∆ ≥ 2, Min-COS-C on (∗,∆)-matrices is polynomial-time
approximable with a factor of 6 if ∆ = 3 and with a factor of (∆+2) if ∆ 6= 3,
and Min-COS-R on (∗,∆)-matrices is polynomial-time approximable with
a factor of (∆ + 1). In particular, this implies a polynomial-time factor-4
approximation algorithm for Min-COS-C on (∗, 2)-matrices. Factor 4 seems
to be the best one can currently hope for because a factor-δ approximation
for Min-COS-C restricted to (∗, 2)-matrices implies a factor-δ/2 approxi-
mation for Vertex Cover [42]. It is commonly conjectured that Vertex

Cover is not polynomial-time approximable within a factor of 2− ǫ, for any
constant ǫ > 0, unless P=NP [27]. Moreover, on (∗,∆)-matrices with ∆ ≥ 2,
Min-COS-C and Min-COS-R are fixed-parameter tractable with respect to
the combined parameter ∆, d.

2. On (∗, 2)-matrices, Min-COS-C and Min-COS-R admit polynomial-time
computable problem kernels consisting of O(d2) columns and rows.

3. On (2, ∗)-matrices, there are polynomial-time approximation algorithms yield-
ing approximation factors of 6 and 4 for Min-COS-C and Min-COS-R,

4This was independently observed in our previous conference paper [10], see also the PhD
thesis of the first author [8].

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

respectively. Moreover, Min-COS-C and Min-COS-R can be solved in
O(6d · min{m4n,m2n3}) and O(4d · min{m4n,m2n3}) time, respectively.

We summarize known and new results for Max-COS-C, Min-COS-C, Max-

COS-R, and Min-COS-R in Table 1.
The paper is structured as follows. After a section with preliminaries and

basic facts, we consider (∗,∆)-matrices in Sections 3–7: The main idea of our
algorithms for these matrices is presented in Section 3. Section 4 contains the
proof for our main structural theorem, Sections 5 and 6 deal with two subprob-
lems that need to be considered: finding forbidden submatrices and handling
matrices that are already well-structured in some sense. The running times and
approximation factors of our algorithms for (∗,∆)-matrices are provided in Sec-
tion 7. Section 8 briefly describes a kernelization in the case of (∗, 2)-matrices
and approximation and fixed-parameter algorithms for (2, ∗)-matrices. Some
open problems are stated in Section 9.

2. Preliminaries and Basic Facts

Given an instance of a minimization (or maximization) problem, a factor-δ
approximation algorithm for this problem returns in polynomial time a solution
such that if the cost of the solution is d and the cost of an optimal solution
is dopt, then d ≤ δ · dopt (or d ≥ δ · dopt, respectively). For an overview on
approximation algorithms, refer to [4, 45].

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [12, 16, 36]. One dimension is the input
size n (as in classical complexity theory), and the other one is the parameter d
(usually a positive integer). A problem is called fixed-parameter tractable (FPT)
if it can be solved in f(d) · nO(1) time, where f is a computable function only
depending on d. A core tool in the development of fixed-parameter algorithms
is polynomial-time preprocessing by data reduction rules, often yielding a re-
duction to a problem kernel (kernelization). Here the goal is, given any problem
instance x together with parameter d, to transform it into a new instance x′ with
parameter d′ such that the size of x′ is bounded from above by some function
only depending on d, the instance (x, d) has a solution iff (x′, d′) has a solution,
and d′ ≤ d (see [19] for a recent survey).

By N we refer to the set of positive integers. For an integer n, let

predn, succn : {1, . . . , n} → {1, . . . , n}

be the two functions given by

predn(x) =

{

x − 1 if x > 1
n if x = 1

and succn(x) =

{

x + 1 if x < n
1 if x = n.

All graphs in this work are undirected. Given a graph G = (V,E) and a
vertex v ∈ V , we write N(v) to denote the set of v’s neighbors in G, and N [v] to
denote the closed neighborhood of v, that is, N [v] = N(v) ∪ {v}. For V ′ ⊆ V ,

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Table 1: Summary of known and new results for Max-COS-C, Min-COS-C, Max-COS-R and
Min-COS-R. The table shows the factors of the approximation algorithms and the running
times of the fixed-parameter algorithms. The type (x, y) of the input matrix describes the
maximum number of 1s per row and column: An (x, y)-matrix has at most x 1s per column
and at most y 1s per row. With x = ∗ or y = ∗, we indicate that there is no upper bound on
the number of 1s in columns or in rows, respectively; ∆ stands for an any number between 1
and n. We only emphasize the exponential parts of the running times, that is, the shown
running times have to be multiplied with polynomials with respect to the input size. An
empty field means that we are not aware of any results concerning the corresponding problem
variant.
Type Max-COS-C Min-COS-C Max-COS-R Min-COS-R

(3, 2) • 0.5-approx.1

Pos. results: see (∗, 2) Pos. results: see (∗, 2) Pos. results: see (∗, 2)

(∗, 2)
• No const. approx.2

• W[1]-hard2,3
• No 2.72-approx.2

• Poly. kernel4
• 0.75-approx.5

• 2O(d′)-alg5 • Poly. kernel4,6

More pos. results: (∗, ∆) More pos. results: (∗, ∆)

(∗, ∆)
• (∆+2)-approx.7

• (∆+2)d ·∆O(∆)-alg.7
• (∆+1)-approx.

• (∆+1)d ·(2∆)2d-alg.
Neg. results: see (∗, 2) Neg. results: see (∗, 2)

(2, 3) • 0.8-approx.1

More pos. results: (2, ∗) Pos. results: see (2, ∗) Pos. results: see (2, ∗)

(2, ∗)
• 0.5-approx.1

• 2O(d′)-alg.5
• 6-approx.
• 6d-alg.8

• No const. approx.5

• W[1]-hard3,5

• No 2.72-approx.5

• 4-approx.
• 4d-alg.

(∆, ∗)

Neg. results: see (2, ∗) Neg. results: see (2, ∗)

1Result is due to Tan and Zhang [42].
2The hardness of approximating Max-COS-C was shown independently by Dom et al. [10]

and Tan and Zhang [42]; the W[1]-hardness of Max-COS-C and the hardness of approximating
Min-COS-C with a factor better than 2.72 follow from both reductions [10, 42].

3W[1]-hardness is with respect to the parameter d′.
4The polynomial problem kernel is with respect to the parameter d.
5Result is described in the first author’s PhD thesis [8].
6More results are known for the case where the (∗, 2)-matrix does not have duplicate rows:

the problem is then equivalent to Linear Arrangement By Deleting Edges, for which a
time-(2.4676d · |M |O(1)) algorithm and a smaller problem kernel exist [15].

7For the ease of presentation, at this point the table ignores the case ∆ = 3. Indeed,
if ∆ = 3, then the factor of the approximation algorithm for Min-COS-C is 6, and the
running time of the fixed-parameter algorithm is 6d · ∆O(∆) · |M |O(1).

8More results are known for the case where the (2, ∗)-matrix does not have duplicate
columns: the problem is then equivalent to 2-Layer Planarization, for which faster running
times [14, 40, 41] and a problem kernel [13] are known.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

G[V ′] denotes the subgraph of G induced by the vertices from V ′, that is, the
graph with vertex set V ′ and edge set {{u, v} ∈ E | u, v ∈ V ′}. A hole is an
induced cycle of length at least 5, that is, a cycle of length at least 5 such that
there is no edge between two vertices that are not consecutive on the cycle.

We only consider 0/1-matrices M = (mi,j), that is, matrices containing
only 0s and 1s. We use the term line of a matrix M to denote a row or column
of M . A column of M that contains only 0-entries is called a 0-column. Two
matrices M and M ′ are called isomorphic if M ′ is a permutation of the rows
and columns of M . Complementing a line ℓ of a matrix means that all 1-entries
of ℓ are replaced by 0s and all 0-entries are replaced by 1s. One can regard a
matrix as a set of columns together with an order on this set; this order is called
the column ordering of the matrix.

Let M = (mi,j) be a matrix. Let ri denote the i-th row and let cj denote
the j-th column of M , and let M ′ be the submatrix of M that results from
deleting all rows except for ri1 , . . . , rip

and all columns except for cj1 , . . . , cjq

from M . Then M ′contains an entry mi,j of M , denoted by mi,j ∈ M ′, if i ∈
{i1, . . . , ip} and j ∈ {j1, . . . , jq}. A row ri of M belongs to M ′, denoted by ri ∈
M ′, if i ∈ {i1, . . . , ip}. Analogously, a column cj of M belongs to M ′ if j ∈
{j1, . . . , jq}. A matrix M is said to contain a matrix M ′ if M ′ is isomorphic to
a submatrix of M .

Every 0/1-matrix M = (mi,j) can be interpreted as the adjacency matrix of a
bipartite graph GM : For every line of M there is a vertex in GM , and for every 1-
entry mi,j in M there is an edge in GM connecting the vertices corresponding
to the i-th row and the j-th column of M . We call GM the representing graph
of M . In the following definitions, all terms are defined in analogy to the
corresponding terms in graph theory: Two lines ℓ, ℓ′ of M are connected in M
if there is a path in GM connecting the vertices corresponding to ℓ and ℓ′. A
submatrix M ′ of M is called connected if each pair of lines belonging to M ′ is
connected in M ′. A maximal connected submatrix of M is called a component
of M . A shortest path between two connected submatrices M1,M2 of M is the
shortest sequence ℓ1, . . . , ℓp of lines such that ℓ1 ∈ M1 and ℓp ∈ M2 and the
vertices corresponding to ℓ1, . . . , ℓp form a path in GM . If such a shortest path
exists, then p − 1 is called the distance between M1 and M2.

Note that each submatrix M ′ of M one-to-one corresponds to an induced
subgraph of GM and that each component of M one-to-one corresponds to a
connected component of GM . An illustration of the components of a matrix is
shown in Fig. 1. If the distance between two lines ℓ1 and ℓp is a positive even
number, then ℓ1 and ℓp are either both rows or both columns; if the distance is
odd, then exactly one of ℓ1 and ℓp is a row and one is a column.

Observation 2.1. Let M be a matrix and let ℓ be a line of M . Then ℓ belongs
to exactly one component M ′ of M and M ′ contains all 1-entries of ℓ.

The following corollary is a direct consequence of Observation 2.1.

Corollary 2.1. Let M be a matrix and let M1, . . . ,Mi be the components of M .
If the column (or row) sets F1, . . . , Fi are optimal solutions for Min-COS-C

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

c1c1 c2

c2

c3

c3 c4c4 c5c5

c6

c6

r1

r1

r2

r2

r3
r3

r4

r4

11
111

1
1
11

0
0
0

0 00
00
0
0

0

00 0
0

Figure 1: A matrix with two components and its representing bipartite graph.

k + 2

k + 2

MIk
, k ≥ 1

k + 3

k + 3

MIIk
, k ≥ 1

k + 3

k + 2

MIIIk
, k ≥ 1

MIV MV

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

111
11

11
11

111
1111
11

11

11
1 1

11
11

1 11
1 1

11
11

1 1
11

1

1 1

11
11

000
0000

00
0

0
00

0
0

00
0

00 0
0 00

0 0
0

0
0

0

00
0

00
0 00

0
0

00
0

0
0

0 00

0
0

00
0

Figure 2: The set T of forbidden submatrices due to Tucker [44] mentioned in Theorem 2.1.

(or Min-COS-R) on M1, . . . ,Mi, respectively, then F1 ∪ . . . ∪ Fi is an optimal
solution for Min-COS-C (or Min-COS-R) on M .

Tucker [44] showed that matrices that have the C1P can be characterized
by a set of forbidden submatrices. This result forms the base of most of our
findings.

Theorem 2.1 ([44, Theorem 9]). A matrix M has the C1P iff it contains none
of the matrices MIk

, MIIk
, MIIIk

(with k ≥ 1), MIV, and MV (see Fig. 2).

We denote the set of submatrices given by Theorem 2.1 with T .
The Circular Ones Property, which is defined as follows, is closely related

to the C1P, but is easier to achieve. We use it as an intermediate concept for
dealing with the harder to achieve C1P.

Definition 2.1. A matrix has the Circular Ones Property (Circ1P) if there
exists a permutation of its columns such that in each row of the resulting matrix
the 1s appear consecutively or the 0s appear consecutively (or both).

Intuitively, if a matrix has the Circ1P, then there is a column permutation
such that the 1s in each row appear consecutively when the matrix is wrapped
around a vertical cylinder. We have no theorem similar to Theorem 2.1 that
characterizes matrices having the Circ1P; the following theorem of Tucker [43]
is helpful instead.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Theorem 2.2 ([43, Theorem 1]). Form the matrix M ′ from a matrix M by
complementing all rows with a 1 in the first column of M . Then M has the
Circ1P iff M ′ has the C1P.

In our context, the following direct consequence of Theorem 2.2 is particu-
larly useful.

Corollary 2.2. Let M be an m × n-matrix and let j be an arbitrary integer
with 1 ≤ j ≤ n. Form the matrix M ′ from M by complementing all rows with
a 1 in the j-th column of M . Then M has the Circ1P iff M ′ has the C1P.

We end with two straightforward observations. First, note that with respect
to (2,2)-matrices, all problems (Min-COS-C, Min-COS-R, and Min-CO-1E)
are polynomial-time solvable. The reason is that any (∗, 2)-matrix can be inter-
preted as a graph, and, hence, Min-COS-C, Min-COS-R, and Min-CO-1E can
be formulated as graph modification problems (see [8, 22] and Section 8). These
graph modification problems are polynomial-time solvable on input graphs with
maximum degree 2, which correspond to (2, 2)-matrices. Second, on (∗, 2)-
matrices the problems Min-COS-R and Min-CO-1E are equivalent because
deleting a row one-to-one corresponds to flipping a 1-entry since a row with
only one 1-entry can be clearly omitted from further consideration.

3. Outline of the Algorithmic Framework for (∗, ∆)-Matrices

In what follows, we briefly describe the basic algorithmic approach underly-
ing all our algorithms. Based on this algorithmic skeleton, we will point out in
the subsequent sections the essential ideas needed for deriving our algorithms.

In order to derive constant-factor polynomial-time approximation algorithms
or fixed-parameter algorithms for Min-COS-C and Min-COS-R on (∗,∆)-
matrices, we exploit Theorem 2.1 by iteratively searching and destroying in the
given input matrix every submatrix that is isomorphic to one of the forbid-
den submatrices from the set T given in Theorem 2.1: In the approximation
scenario all columns or rows belonging to a forbidden submatrix are deleted,
whereas in the fixed-parameter setting a search tree algorithm branches recur-
sively into several subcases, deleting in each case one of the columns or rows of
the forbidden submatrix.

To show the performance guarantees of the thus derived algorithms, ob-
serve that a (∗,∆)-matrix cannot contain submatrices of types MIIk

and MIIIk

with arbitrarily large sizes. Therefore, the main difficulty is that every problem
instance can contain submatrices of type MIk

of unbounded size—the approx-
imation factor or the number of cases to branch into would therefore not be
bounded from above by ∆. To overcome this difficulty, we use the following
two-phase approach:

1. Destroy only those forbidden submatrices that belong to a certain finite
subset X of T (and whose sizes are upper-bounded, therefore).

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

2. Solve Min-COS-C or Min-COS-R for each component of the resulting
matrix. According to Corollary 2.1, these solutions can be combined into
a solution for the whole input matrix.

The finite set X ⊆ T is specified in the following theorem, the main structural
contribution of this work. The technical proof is presented in Section 4.

Theorem 3.1. Let X := {MIk
| 1 ≤ k ≤ ∆ − 1} ∪ {MIIk

| 1 ≤ k ≤ ∆ − 2} ∪
{MIIIk

| 1 ≤ k ≤ ∆ − 1} ∪ {MIV,MV}. If a (∗,∆)-matrix M contains none of
the matrices in X as a submatrix, then each component of M has the Circ1P.

Now, to derive approximation and fixed-parameter algorithms, there remain
two fundamental challenges:

1. Efficiently find a matrix from X, if existing.

2. Transform a matrix with Circ1P into a matrix with C1P.

After giving the proof for Theorem 3.1 in Section 4, we will address these
two points separately in Section 5 and Section 6. A summary of our algorithmic
results for Min-COS-C and Min-COS-R follows in Section 7.

4. Proof of the Main Structural Theorem

In this section, we prove Theorem 3.1.

Proof. We prove Theorem 3.1 by contraposition. More precisely, we show that
if a component of a (∗,∆)-matrix M does not have the Circ1P, then this com-
ponent contains a submatrix in X. To this end, let A be a component of M not
having the Circ1P. Then, by Corollary 2.2, there must be a column c of A such
that the matrix A′, resulting from A by complementing those rows that have
a 1 in column c, does not have the C1P and, therefore, contains one of the sub-
matrices in T (Theorem 2.1). In the following, we will make a case distinction
based on which of the forbidden submatrices in T is contained in A′ and which
rows of A have been complemented, and show that in each case the matrix A
contains a forbidden submatrix from X.

We denote the forbidden submatrix contained in A′ with B′ and the subma-
trix of A that corresponds to B′ with B. Note that the matrix A′ must contain
a 0-column due to the fact that all 1s in column c have been complemented.
Since no forbidden submatrix in T contains a 0-column, column c cannot belong
to B′ and, hence, not to B. We call c the complementing column of A.

When referencing to row or column indices of B′, we will always assume that
the rows and columns of B′ are ordered as shown in Fig. 2.

Case 1: The submatrix B′ is isomorphic to MIV.
If no row of B has been complemented, then B = B′, and A also contains a

submatrix MIV, which belongs to X.
If exactly one of the first three rows of B has been complemented such that

the resulting matrix is isomorphic to MIV, then B contains one 0-column, and B

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

B
′

B
1 2 3 45

1

2
3

4

111 1

11
11

1

11

11
11

1

1

1
11

00

00
00

0
00

00 00

00
00

0

0
00

0
00

0
0

0
0

Figure 3: Illustration for Case 1 in the proof of Theorem 3.1. Complementing the second row
of an MIV (left side) generates an MV (right side). (The rows and columns of the MV are
labeled with numbers according to the ordering of the rows and columns of the MV in Fig. 2.)
Note that complementing the fourth row of the matrix on the right side does not affect the
existence of an MV.

B
′

B

compl.
column

1
11

11
1
1

11

1111
11

1

1

1
11

0

0

0
000

0
00

0
00

000

0
0

0
0

0
0

0

0

0
00

0
0

Figure 4: Illustration for Case 2 in the proof of Theorem 3.1. Suppose that only the third row
of B is complemented. Then B together with the complementing column forms an MIV.

without the 0-column forms an MV, independent of whether the fourth row of B
also has been complemented (see Fig. 3 for an example). Again, we have shown
that A contains a submatrix from X.

If two or three of the first three rows of B have been complemented, then A
contains an MI1 ∈ X as a submatrix: Assume, for instance, that the first two
rows have been complemented. If the fourth row has also been complemented,
then there is an MI1 consisting of the rows r1, r2, r4 and the columns c2, c4, c5

of B. Otherwise, there is an MI1 consisting of the rows r1, r2, r4 and the
columns c1, c3, c6 of B.

Case 2: The submatrix B′ is isomorphic to MV.
Analogously to Case 1 we can make a case distinction on which rows of A

have been complemented, and in every subcase we can find a forbidden subma-
trix from X in A. In some of the subcases the forbidden submatrix can only be
found in A if in addition to B also the complementing column of A is considered.
We will present only one representative example for all subcases of Case 2: If
only the third row of B has been complemented, then the complementing col-
umn of A contains a 0 in all rows that belong to B except for the third. Then B
forms an MIV together with the complementing column of A (see Fig. 4).

Case 3: The submatrix B′ is isomorphic to MIk
with k ≤ ∆ − 1.

Subcase 3.1: No row of B has been complemented. Then B = B′, and A
also contains a submatrix MIk

.
Subcase 3.2: Exactly one row of B has been complemented. Then, together

with the complementing column of A, the matrix B forms an MIIIk
.

Subcase 3.3: At least two, but not all rows of B have been complemented.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

B B
c(3)c(2) c(1)

r(2)r(1)

cj1 cj2

rj1

rj2

cici−1 ci+1

ri

ri−1

ri+1

11 1

11
1 1

11
11

11
11

1

11

11
1 1

11
11

11
11

00

0
0
0

0
0

0

000
0

0
00

0 00
0000

0
00

0

0
0

0

00
0

0000

0
0
0

0
0

0

00

000
0

0
00

0 00
0000

0
00

0

0
0

0

00
0

Figure 5: Illustration of Case 4 in the proof of Theorem 3.1.

If k = 1, then B contains a 0-column, and B with the 0-column deleted forms
an MI1 together with the complementing column of A. Otherwise, let ri, ri′

with i′ > i + 1 be two complemented rows where no row ri′′ with i < i′′ < i′

has been complemented. (We can assume that two such rows ri and ri′ exist
because we can permute the rows and columns belonging to B′ in an appropriate
way due to the symmetry of B′.) If i′ = i + 2, then the rows ri, ri+1, ri+2

and columns ci+1, ci+2 of B form an MI1 together with the complementing
column of A. Otherwise, the rows ri, . . . , ri′ and columns ci+1, . . . , ci′ of B
form an MIIi′−i−2

together with the complementing column of A. Note that
MIIi′−i−2

∈ X because i′ − i − 2 ≤ k − 1 ≤ ∆ − 2.
Subcase 3.4: All rows of B have been complemented. If k = 1, then B

forms an MIII1 together with the complementing column of A; if k = 2, then B
forms an MI2 ; otherwise, there is an MI1 consisting of the rows r1, r2, r4 and
the columns c1, c3, c4 of B.

Case 4: The submatrix B′ is isomorphic to MIk
with k ≥ ∆.

Then no row of B has been complemented, because otherwise there would be
a row in A that contains more than ∆ 1s (note that the complementing column
of A contains a 1 in every row that is complemented). Therefore, B = B′, and A
also contains an MIk

—but note that k ≥ ∆ and, therefore, MIk
/∈ X.

Let c be the complementing column of A. Since no row of B has been
complemented, the column c contains no 1 in a row that belongs to B—hence,
the distance between c and B is greater than 1. However, column c must be
connected to B due to the definition of a component, and, therefore, there must
be a shortest path from c to B.

Now, make a case distinction on the parity of the distance between c and B.
Subcase 4.1: The distance between c and B is even. Then there is a shortest

path c(0), r(1), c(2), . . . , c in A between B and c with c(0) ∈ B. (If the distance
between c and B is two, then c = c(2).) Note that, since the distance between c
and B is even, the line c(0) must be a column. This means that the row r(1) does
not belong to B, but has a 1 in a column that belongs to B and a 1 in column c(2).
Column c(2) does neither belong to B nor does it have a 1 in a row that belongs
to B. This constellation is displayed in the left part of Fig. 5. Because of k ≥ ∆,
the matrix B has at least ∆ + 2 columns, and at least three columns of B must

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

k + 3 k + 3k + 3

k
+

3

k
+

3

k
+

3

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

1
1

1

1 1

11
11

1
1

1
1

1 1

11
11

1
1

1

1

1

1

11
1

11

11
11

1
1

0
0

0

0
0

0
0

00

00
0

0

0
0

0
0

0

0
0

0
0

0

00

00
0

0

0

0

0

0
0

0 0

00
0

0

0
0

M M ′ M ′′

Figure 6: An illustration of the claim used in Case 5 of the proof of Theorem 3.1. Matrix M

is composed of an MIIk and a 0-column. Complementing rows r2, rk+1, and rk+2 of M leads
to the matrix M ′. Complementing the rows of M ′ that have a 1 in column ck+3, namely, r2,
rk+1, and rk+3, transforms M ′ to matrix M ′′ which contains an MIk+1

and a 0-column ck+3.

contain a 0 in row r(1). Without loss of generality, let cj1 and cj2 with j2 > j1+1
be two columns containing a 0 in row r(1) such that all entries of row r(1)

between cj1 and cj2 are 1s. (We can assume that such two columns cj1 and cj2

exist due to the symmetry of B′.) Then there is an MIIIj2−j1−1
consisting of

the rows rj1 , . . . , rj2−1, r
(1) and columns cj1 , . . . , cj2 , c

(2). Since there can be at
most ∆ 1s in a row, we have j2−j1−1 ≤ ∆−1, and, therefore, MIIIj2−j1−1

∈ X.
Subcase 4.2: The distance between c and B is odd. Then there is a shortest

path r(0), c(1), r(2), c(3), . . . , c in A between B and c with r(0) ∈ B. (If the dis-
tance between c and B is three, then c = c(3).) This means that the column c(1)

does not belong to B, but it has a 1 in a row ri = r(0) that belongs to B. (We
can assume that i > 1 and i < k + 2 due to the symmetry of B′.) Row r(2)

does neither belong to B nor does it have a 1 in a column that belongs to B,
but it has 1s in the columns c(1) and c(3). Column c(3) neither belongs to B
nor does it have a 1 in a row that belongs to B. This constellation is depicted
in the right part of Fig. 5. If column c(1) contains a 0 in row ri−1 as well as
in row ri+1, then there is an MIV consisting of the rows ri−1, ri+1, r

(2), ri and
columns ci−1, . . . , ci+2, c

(1), c(3). If column c(1) contains a 1 in at least one of
the rows ri−1 and ri+1, say in ri−1, then there is an MIII1 consisting of the rows
ri−1, ri, r

(2) and columns ci−1, ci+1, c
(1), c(3).

Case 5: The submatrix B′ is isomorphic to MIIk
with k ≥ 1.

Here, we re-use the argumentation for A′ containing an MIk+1
(Case 3 and

Case 4), since the matrix type MIIk
is closely related to MIk

, as shown in the
following claim.
Claim: For an integer k ≥ 1, let M be a (k + 3) × (k + 4)-matrix composed
of an MIIk

and an additional 0-column, and let M ′ be any matrix resulting
from M by complementing a subset of its rows. Then, complementing all rows
of M ′ that have a 1 in column ck+3 results in a matrix containing MIk+1

and
an additional 0-column.
Proof of the claim: Let R ⊆ {1, 2, . . . , k + 3} be the set of the indices of the
rows that have been complemented in M in order to form M ′. After comple-
menting the rows ri with i ∈ R in M , the column ck+3 of M ′ contains 1s in all
rows ri with i ∈ ({1, . . . , k + 1} ∩ R) ∪ ({k + 2, k + 3} \ R). It is easy to see
that complementing these rows in M ′ results in the described matrix, proving

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

the claim. See Fig. 6 for an illustration of the claim.
We return to the proof of Case 5. The matrix B′ together with a 0-column

has been created by complementing a subset of the rows belonging to B. Apply-
ing the above claim, regarding B′ together with the 0-column as the matrix M
mentioned in the claim, shows that there is a column cj in A such that com-
plementing all rows that contain a 1 in column cj results in an MIk+1

and a
0-column. Then A must contain a submatrix from X as we have shown in
Case 3 and Case 4.

Case 6: The submatrix B′ is isomorphic to MIIIk
with k ≥ 1.

Similarly to Case 5, this case can be reduced to Case 3 or Case 4 by applying
the following claim, which reveals the relationship between matrix types MIIIk

and MIk
. This claim can be proven in analogy to the claim in Case 5.

Claim: For an integer k ≥ 1, let M = MIIIk
, and let M ′ be any matrix

resulting from M by complementing a subset of its rows. Then, complementing
all rows of M ′ that have a 1 in column ck+3 results in a (k +2)× (k +3)-matrix
containing MIk

and an additional 0-column.

5. Fast Detection of Small Forbidden Submatrices

The algorithms based on the approach described in Section 3 search in every
step of the first phase for a forbidden submatrix from the set X specified in
Theorem 3.1. Hence, how to efficiently detect these forbidden submatrices is
a crucial issue concerning the running times of these algorithms. Herein, note
that the number of columns (in the case of Min-COS-C) or rows (in the case
of Min-COS-R) of the submatrices from X is always bounded from above by a
number depending on ∆, the maximum number of 1s per row. A straightforward
exhaustive search would have to try Θ(m∆+1 ·n∆+2) possibilities. Here, we show
how these small forbidden submatrices can be found in polynomial time with
the degree of the polynomial not depending on ∆. For our search algorithms,
we use a characterization of matrices having the C1P via asteroidal triples due
to Tucker [44]. For a graph G = (V,E), three vertices u, v, w ∈ V form an
asteroidal triple if between any two of them there exists a path in G that does
not contain a vertex from the closed neighborhood of the third vertex.

Theorem 5.1 ([44, Theorem 6]). A matrix M has the C1P iff its representing
bipartite graph GM does not contain an asteroidal triple whose three vertices
correspond to columns of M .

Using Theorem 5.1, a forbidden submatrix from T (see Theorem 2.1 and
Fig. 2) in a given matrix M can be found as follows: For every vertex triple u, v, w
in GM corresponding to columns of M , determine the sum of the lengths of
three shortest paths connecting u with v, u with w, and v with w, respectively,
each time avoiding the closed neighborhood of the third vertex. If all three
paths exist, then the vertices u, v, w form an asteroidal triple in GM . Select
a triple u, v, w where the sum is minimum compared to all other triples, and
return the rows and columns of M that correspond to the vertices of the three

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Input: A binary matrix M .
Output: A submatrix M ′ from T occurring in M .

1 construct GM = (R ∪ C, E); // R corresponds to rows and C to columns
2 for every vertex u ∈ C: {
3 Gu := G[(R ∪ C) \ N [u]];
4 for every vertex v ∈ C \ {u}: {
5 compute the lengths of all shortest paths in Gu that start in v; }}
6 choose u, v, w ∈ C such that |P u

G(v, w)| + |P v
G(u, w)| + |P w

G (u, v)| is minimum;
7 V ′ := P u

G(v, w) ∪ P v
G(u, w) ∪ P w

G (u, v);
8 M ′ := the submatrix of M whose rows and columns correspond to V ′;
9 while M ′ contains a row r such that M ′ without r does not have the C1P

or a column c such that M ′ without c does not have the C1P: {
10 delete r or c, respectively, from M ′; }
11 return M ′;

Figure 7: Algorithm for finding forbidden submatrices.

shortest paths computed for this triple. The returned submatrix must contain a
submatrix from T ; however, this procedure does not always return a submatrix
of minimum size, because the sum of the lengths of the three paths computed
for a triple u, v, w is not always the number of vertices in the union of the three
paths—some vertices may be part of more than one path. In what follows, we
start with analyzing the size of the returned matrix and show that it contains
at most three more columns (five more rows) than a forbidden submatrix with
minimum number of columns (rows). Later on, we will show how to find a
submatrix with a minimum number of rows or a minimum number of columns
or both (Theorem 5.2). Note that neither the known linear-time or polynomial-
time algorithms (see Section 1) for deciding whether a given matrix has the C1P
nor the known algorithms for finding an asteroidal triple in a graph (see [28])
output a minimum-size submatrix from T (and, thus, a forbidden submatrix
from X) or a minimum-size induced subgraph containing an asteroidal triple.

Let G = (V,E) be a graph and u, v, w ∈ V be an asteroidal triple in G.
With Pu

G(v, w) we denote the vertex set of a shortest path in G[V \ N [u]] be-
tween v and w (including v and w). Figure 7 contains the pseudocode of the
algorithm behind the above approach. The following proposition gives an upper
bound on the numbers of rows and columns of the submatrix returned by the
algorithm.

Proposition 5.1. Let M be a (∗,∆)-matrix of size m × n that contains a
forbidden m′ × n′-submatrix M ′ from T . Then the algorithm in Fig. 7 returns
in O(∆mn2 + n3) time a submatrix of M that belongs to T and has at most

m′ rows and n′ columns if M ′ = MIk
,

m′ rows and n′ columns if M ′ = MIIk
,

m′ + 3 rows and n′ + 2 columns if M ′ = MIIIk
,

m′ + 5 rows and n′ + 3 columns if M ′ = MIV, and
m′ + 1 rows and n′ columns if M ′ = MV.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

GMIk
: GMIIk

: GMIIIk
:

GMIV : GMV :
xx

xx

y

yy

y z

zz

z

· · ·· · ·· · ·

k k + 1 k + 1

Figure 8: Representing graphs of the forbidden submatrices from T (Fig. 2) due to Tucker [44].
Black vertices correspond to rows, white vertices correspond to columns. The numbers k

and k + 1 refer to the number of black vertices in the lower parts of the first three graphs. In
the case of matrix MIk ∈ T , every triple of white vertices is an asteroidal triple. In all other
cases, there is exactly one asteroidal triple consisting of white vertices; this triple is denoted
by x, y, z.

Proof. By the above reasoning, the returned matrix M ′ clearly contains a sub-
matrix from T . Furthermore, the lines 9 and 10 of the pseudocode in Fig. 7
ensure that M ′ is minimal; hence, the matrix M ′ must be one of the matrices
from T .

Next, we prove the claimed row and column numbers of the returned ma-
trix M ′. Since M ′ does not have the C1P, the representing graph GM ′ of M ′

contains an asteroidal triple x, y, z corresponding to three columns of M ′ (The-
orem 5.1). If M ′ = MIk

, then every triple of vertices corresponding to columns
of M ′ is an asteroidal triple in GM ′ . To see this, consider the first graph
in Fig. 8, which shows the representing graphs of the forbidden submatrices
from T : For every triple of white vertices, there is a path between any two
of the vertices of the triple that avoids the closed neighborhood of the third.
If M ′ 6= MIk

, then there is exactly one asteroidal triple in GM ′ . This can be
seen by considering the last four graphs in Fig. 8: The white vertices x, y, z
form an asteroidal triple; any other triple of white vertices contains two ver-
tices that are not connected by a path avoiding the closed neighborhood of the
third. Let pxyz := |P x

GM′
(y, z)|+ |P y

GM′
(x, z)|+ |P z

GM′
(x, y)|. By considering the

asteroidal triples in Fig. 8 one can verify that

pxyz = 2k + 7 if M ′ = MIk
,

pxyz = 2k + 9 if M ′ = MIIk
,

pxyz = 2k + 13 if M ′ = MIIIk
,

pxyz = 21 if M ′ = MIV, and
pxyz = 13 if M ′ = MV.

For example, if M ′ = MIIIk
, then |P x

GM′
(y, z)| = 2k + 3, |P y

GM′
(x, z)| = 5, and

|P z
GM′

(x, y)| = 5, and, hence, pxyz = (2k + 3) + 5 + 5 = 2k + 13.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Let u, v, w ∈ C be the vertices chosen in line 6 of the algorithm, and
let puvw := |Pu

G(v, w)| + |P v
G(u,w)| + |Pw

G (u, v)|. Clearly, puvw ≤ pxyz be-
cause u, v, w are selected such that |Pu

G(v, w)|+ |P v
G(u,w)|+ |Pw

G (u, v)| is mini-
mized. The returned submatrix consists of at most (puvw − 3)/2 ≤ (pxyz − 3)/2
rows because each of the vertices u, v, w is counted twice in puvw and because
every second vertex in each of the vertex sets Pu

G(v, w), P v
G(u,w), Pw

G (u, v) cor-
responds to a column in M . It follows that the row number of the submatrix
returned by the algorithm is upper-bounded by

((2k + 7) − 3)/2 = k + 2 = m′ if M ′ = MIk
(where m′ = k + 2),

((2k + 9) − 3)/2 = k + 3 = m′ if M ′ = MIIk
(where m′ = k + 3),

((2k + 13) − 3)/2 = k + 5 = m′ + 3 if M ′ = MIIIk
(where m′ = k + 2),

(21 − 3)/2 = 9 = m′ + 5 if M ′ = MIV (where m′ = 4), and
(13 − 3)/2 = 5 = m′ + 1 if M ′ = MV (where m′ = 4).

The number of columns in M ′ follows with a completely analogous argu-
mentation.

To see the claimed running time, note that lines 2–5 can be executed in O(n2 ·
(n + ∆m)) time by using breadth-first search in line 5: the number of vertices
in C is n, and the input graph Gu for the breadth first search has m+n vertices
and at most ∆m edges. For considering all triples u, v, w in line 6, the algorithm
needs O(n3) time. The test in line 9 can be executed in linear time [6], that
is, in O(m′ + n′ + ∆m′) time, and, hence, the time needed for lines 9–10 is
dominated by the time needed for lines 1–8.

Next, we consider the consequences of Proposition 5.1 for the task of finding
forbidden submatrices from X when solving Min-COS-C or Min-COS-R with
the approach described in Section 3.

Corollary 5.1. Let M be a (∗,∆)-matrix of size m × n.

1. If ∆ = 3 or ∆ = 4 and the algorithm in Fig. 7 does not find a forbidden
submatrix from T consisting of at most 9 rows (columns), or

2. if ∆ = 2 or ∆ ≥ 5 and the algorithm in Fig. 7 does not find a forbidden
submatrix from T consisting of at most ∆ + 4 rows (columns),

then M does not contain a forbidden submatrix from the set X specified in
Theorem 3.1.

Proof. Assume that M contains a submatrix M ′ from X consisting of m′ rows
and n′ columns. The number of rows and the number of columns of the matrix
returned by the algorithm is upper-bounded by k + 2 if M ′ = MIk

, by k + 3
if M ′ = MIIk

, by k+5 if M ′ = MIIIk
, by 9 if M ′ = MIV, and by 5 if M ′ = MV, as

described in the proof of Proposition 5.1. Since, on the one hand, the matrices
of the type MIk

in X have k ≤ ∆ − 1, the matrices of the type MIIk
in X have

k ≤ ∆−2, and the matrices of the type MIIIk
in X have k ≤ ∆−1, and, on the

other hand, the matrix M can contain an MIV as a submatrix only if ∆ ≥ 3,
it follows that the algorithm returns a matrix that has the claimed number of
rows and columns.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

The number of columns and rows of the matrix returned by the algorithm in
Fig. 7 is always close to the minimum number of columns or rows, respectively.
However, if a submatrix from T shall be found that has exactly the minimum
possible number of columns or rows, the algorithm in Fig. 7 is only useful in
the case where this submatrix is of the type MIk

or MIIk
. In the following,

we present algorithms for finding a minimum-size submatrix of the type MIIIk

and for finding submatrices of the types MIV or MV. The advantage of the
algorithm in Fig. 7, however, is that of being faster.

In order to find a minimum-size submatrix of the type MIIIk
, first observe

that the representing graph of a matrix MIk
is a hole. Hence, finding an in-

duced MIk
reduces to finding a minimum-size hole in a graph, a task which can

be done in polynomial time (see below). For finding an induced MIIIk
, we use

the similarity between the matrix types MIIIk
and MIk

: the upper left part of an
MIIIk

is identical to the upper part of an MIk
—the difference between an MIIIk

and an MIk
lies in the rightmost column and the bottommost row of the MIIIk

.
This similarity allows us to reduce the search for a minimum-size MIIIk

to the
search for a minimum-size hole. The connection between the matrix type MIIIk

and holes in a graph can be formulated as follows.

Observation 5.1. Let M be the (k + 2) × (k + 3)-matrix that results from
complementing the (k + 2)-nd row of an MIIIk

. Then the representing graph
of M consists of an isolated vertex, corresponding to the (k + 3)-rd column
of M , and a chordless cycle.

As a consequence of Observation 5.1, we get the following lemma.

Lemma 5.1. Let M be a binary matrix and k be a positive integer. Then the
following two statements are equivalent:

1. The matrix M contains an MIIIk
as a submatrix.

2. There exist a column cj and a row ri in M with the following properties:

• The row ri has a 1 in column cj.

• If M̃ is the matrix consisting of

– the row that results from complementing ri and

– all rows of M that have a 0 in column cj,

then the representing graph of M̃ contains a chordless cycle H of
length 2k + 4 that contains the vertex corresponding to the comple-
mented row ri.

Moreover, part (2) implies the following:

3. The column cj and the rows and columns corresponding to the vertices of
the chordless cycle H together induce an MIIIk

in M .

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Input: A binary matrix M .
Output: A minimum-size induced submatrix of the type MIIIk occurring in M .

1 M ′ := ∅;
2 for every row ri of M : {
3 for every column cj of M having a 1 in row ri: {
4 R0 := the set of rows having a 0 in column cj ;
5 ri := ri complemented;
6 M̃ := the matrix consisting of ri and all rows from R0;
7 G̃ := the representing graph of M̃ ;
8 search for a minimum-length hole in G̃ that contains the vertex

corresponding to ri;
9 if H exists and |V (H)| + 1 < number of rows and columns in M ′: {

10 M ′ := the submatrix of M that is induced by the column cj and
the rows and columns corresponding to the vertices of H; }}}

11 return M ′;

Figure 9: Algorithm for finding a minimum-size submatrix of the type MIIIk .

Proof. (1) ⇒ (2): Let cj be the column of M that contains the (k+3)-rd column
of the MIIIk

submatrix, and let ri be the row of M that contains the (k + 2)-nd
row of the MIIIk

submatrix. Then ri is the only row of the MIIIk
submatrix

in M that has been complemented, and the claim follows from Observation 5.1.
(2) ⇒ (1) ∧ (3): This claim follows from the fact that the vertex corre-

sponding to column cj cannot be part of H, because in M̃ (after complementing
row ri) column cj contains only 0s. Therefore, the submatrix of M that is in-
duced by the column cj and the rows and columns corresponding to the vertices
of the chordless cycle H induce an MIIIk

.

Lemma 5.1 indicates how to find an induced MIIIk
of minimum size: Try all

combinations of one row ri and one column cj from M such that ri contains a 1
in cj . For each of these combinations, complement ri, take all rows having a 0
in cj , and search in the representing graph of the resulting matrix for the shortest
hole having the properties mentioned in part (2) of Lemma 5.1—in particular,
this hole must contain the vertex corresponding to ri, and, since k ≥ 1, it
must have length 2k + 4 ≥ 6. Each representing graph to be considered has at
most m + n vertices and less than ∆m + n edges. Fig. 9 shows the pseudocode
of this approach.

A shortest hole consisting of a given vertex ri and at least five other vertices
can be found as follows. Try all triples (cj1 , ri′ , cj2) of vertices and search for
the shortest hole on which the four vertices ri, cj1 , ri′ , cj2 appear consecutively.
To find such a hole, cj1 and ri′ are deleted together with their neighbors except
for ri and cj2 , and in the remaining graph a shortest path from cj2 to ri is
sought. Since a shortest path in an unweighted graph can be found in linear
time, we get the following result.

Proposition 5.2. Let M be a (∗,∆)-matrix of size m×n. Then a minimum-size
submatrix of the type MIIIk

in M can be found in O(∆3m3n + ∆2m2n2) time.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

To find a minimum-size submatrix of the type MIV or MV, we use an ex-
haustive search, which leads to the following result.

Proposition 5.3. Let M be a (∗,∆)-matrix of size m × n. A submatrix of
type MIV can be found in O(∆3m2n3) time, and a submatrix of type MV can be
found in O(∆4m2n) time.

Proof. A matrix of type MIV consists of six columns and four rows, and its
fourth row contains three 1s. Since there are at most ∆ 1s in every row of a
(∗,∆)-matrix M , the number of possibilities to select three columns from M
that all contain a 1 in a specific row is bounded by O(∆3). Therefore, the idea
for searching an MIV in M is to iterate over all rows ri of M and test whether M
contains an MIV in such a way that ri forms the fourth row of the MIV; this
test can be performed by considering every triple of columns from M having
a 1 in row ri (there are O(∆3) such triples) in combination with every triple of
columns from M having a 0 in row ri (there are O(n3) such triples). For each of
these combinations, check in O(m) time whether every row of the matrix MIV

appears at least once in the submatrix induced by the selected columns. A
submatrix of the type MV can be found analogously.

The algorithm used in Proposition 5.3 leads to fast running times when
searching a submatrix of one of the types MIV and MV, whereas the algo-
rithm used in Proposition 5.2 efficiently finds a minimum-size submatrix of the
type MIIIk

. We combine the algorithms from Propositions 5.1, 5.3, and 5.2 to
find a submatrix that is isomorphic to any of the submatrices from T and has
a minimum number of rows, columns, rows and columns, or entries.

Theorem 5.2. Let M be a (∗,∆)-matrix of size m×n. A forbidden submatrix
from T in M that has a minimum number of rows can be found in O(∆3m2n ·
(m + n2)) time. Within the same time, one can also find a forbidden submatrix
from T in M that has a minimum number of columns, a minimum number of
rows and columns, or a minimum number of entries.

Proof. The claimed running time can be obtained as follows: First, run the
algorithm from Fig. 7 (Proposition 5.1), which finds a forbidden submatrix of
“almost minimum” size, and let A be the returned submatrix. Second, run the
algorithm from Fig. 9 (Proposition 5.2) to find a submatrix MIIIk

, and let B
be the submatrix found here. Third, run the algorithm of Proposition 5.3 two
times, once for finding a submatrix MIV and once for finding a submatrix MV,
and let C and D, respectively, be the found submatrices. Return the matrix
with the minimum number of rows (columns, rows and columns, entries) out
of A, B, C, and D.

The correctness of this approach is obvious: As shown in the proof of Propo-
sition 5.1, if the forbidden submatrix from T in M with the minimum number of
rows (columns, rows and columns, entries) is of the type MIk

or MIIk
, then M

does not contain a submatrix with less rows (columns, rows and columns, en-
tries) than A. In all other cases, the forbidden submatrix from T in M with the

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

minimum number of rows (columns, rows and columns, entries) must be one
of B, C, and D.

The only forbidden submatrices from T that can occur in a (∗, 2)-matrix are
the matrices MIk

, k ≥ 1, and MIII1 , which leads to the following corollary.

Corollary 5.2. Let M be a (∗, 2)-matrix of size m×n. A forbidden submatrix
from X in M that has a minimum number of columns (rows) can be found in
O(m2n2) time.

6. From Circ1P to C1P

In this section, we consider the problems Min-COS-C and Min-COS-R

restricted to input (∗,∆)-matrices that have the Circ1P; these matrices arise in
the second phase of the algorithmic skeleton described in Section 2.

To solve Min-COS-C (Min-COS-R) on a matrix M with the Circ1P, we
first sort the columns of M in such a way that in every row the 1s appear
consecutively in a circular sense (which, more precisely, means that in every row
the 1s appear consecutively or the 0s appear consecutively or both). This can be
done in linear time [26]. Min-COS-C (Min-COS-R) asks to delete a minimum-
cardinality set of columns (rows) in such a way that in the resulting matrix
the 1s can be placed consecutively in every row by permuting the columns.
We will show that if the number n of columns is big enough compared to ∆,
optimal solutions for Min-COS-C (Min-COS-R) have a special structure: It
is always optimal to delete a set of columns (rows) in such a way that in the
resulting matrix the 1s can be placed consecutively in every row by a number of
“cyclic shifts”. In Section 6.1 we will prove this special structure of the optimal
solutions, and in Sections 6.2 and 6.3 we show how to exploit it when solving
Min-COS-C and Min-COS-R.

6.1. Circ1-Orderings and C1-Orderings

In what follows, it is helpful to imagine the matrices as wrapped around a
vertical cylinder. Thus, a binary matrix M has the Circ1P if by permuting its
columns a matrix M ′ can be obtained with the following property: If M ′ is
wrapped around a vertical cylinder, then the 1s appear consecutively in every
row. The matrix M ′ is said to have the strong Circ1P, and the corresponding
column ordering is called a Circ1-ordering (see Fig. 10). If a binary matrix M
has the strong Circ1P and, in addition, there is a column pair (cj , csuccn(j))
such that in every row ri containing both 1s and 0s it holds that at most one
of mi,j and mi,succn(j) is 1, then we say that M has the shifted strong C1P, and
its column ordering is called a shifted C1-ordering (see Fig. 10). The column
pair (cj , csuccn(j)) is called a C1-cut.

It follows directly from these definitions that a binary matrix M has the
Circ1P iff there is a Circ1-ordering for M ’s columns. Moreover, M has the C1P
iff there is a shifted C1-ordering for M ’s columns, that is, iff there is a Circ1-
ordering for M ’s columns that yields a C1-cut: If the column ordering c1, . . . , cn

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

c1c1 c1 c2c2 c2 c3c3 c3 c4c4 c4 c5c5 c5

11
111

11
111

11
11

1 1
11

1
1 1
11

11
1

0

000
00

00
00 0

0
0

0
0

000

0
00

0

000

0
00

00
0
0

0
0

Figure 10: Left: A matrix with the strong Circ1P. Middle and right: Two matrices with the
shifted strong C1P. The matrix on the right is obtained from the matrix in the middle by
permuting the columns; for both matrices, the pair (c2, c3) is a C1-cut.

of a matrix is a Circ1-ordering and (cj , csuccn(j)) is a C1-cut, then the column
ordering csuccn(j), . . . , cn, c1, . . . , cj places the 1s consecutively in every row of
the resulting matrix (see Fig. 10). Intuitively speaking, wrapping M around
a vertical cylinder, cutting the matrix on the cylinder vertically from top to
bottom between cj and csuccn(j), and unwrapping it from the cylinder places
the 1s consecutively.

To prove the claimed structure of optimal solutions for Min-COS-C and
Min-COS-R on matrices with the strong Circ1P, we show that if a matrix M
has the C1P and the column number is big enough compared to ∆, then every
Circ1-ordering for M ’s columns is a shifted C1-ordering; in other words, if the
matrix has the strong Circ1P, then it also has the shifted strong C1P. To this
end, we show that each Circ1-ordering for the columns of matrix can be obtained
from a shifted C1-ordering by a series of column reversal operations, which do
not destroy the shifted strong C1P.

Let c1, . . . , cn be the column ordering of a matrix. Given two column in-
dices j1, j2, the operation reverse(cj1 , cj2) reverses the order of the columns be-
tween cj1 and cj2 : if j1 < j2, then reverse(cj1 , cj2) reverses the order of the
columns cj1 , . . . , cj2 , and if j1 > j2, then reverse(cj1 , cj2) reverses the order of
the columns cj1 , . . . , cn, c1, . . . , cj2 . More intuitively, for reversing the columns
from j1 to j2 in a matrix M , we first wrap M around a vertical cylinder, then
apply the reverse operation as described, and finally cut the matrix on the cylin-
der vertically from top to bottom and unwrap it from the cylinder. If c1 and cn

are still neighbors after reversing the columns, then this cut is made between c1

and cn; otherwise, there are two cases: if j2 = n, then the cut is made to the
left of c1, and if j1 = 1, then the cut is made to the right of cn.

Definition 6.1 ([26]). A subset C ′ of the columns of a matrix is called uniform
in row r if all entries of row r in the columns of C ′ are the same. Let M be
a matrix and let C be the set of its columns. A circular module of M is a
subset C ′ ⊆ C such that in every row r the subset C ′ is uniform in r or C \ C ′

is uniform in r.

Clearly, if a matrix M has the strong Circ1P, then applying the reverse

operation to a set of columns that form a circular module does not destroy
the strong Circ1P, that is, the operation transforms one Circ1-ordering into
another one. However, there is an even stronger statement due to Hsu and

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

McConnell [26].

Theorem 6.1 ([26, Theorem 3.8]). Let M be a matrix having the Circ1P. Then
every Circ1-ordering for M ’s columns can be obtained by starting from an arbi-
trary Circ1-ordering and applying a sequence of reverse operations, each of them
reversing a circular module.

We can now state a useful relation between the Circ1-orderings and the
shifted C1-orderings for the columns of matrices having the C1P. This observa-
tion is crucial for our algorithms solving Min-COS-R and Min-COS-C, since
it implies that if n is big compared to ∆ then it is optimal to delete a set of
columns or rows, respectively, in such a way that the resulting matrix has the
shifted strong C1P.

Lemma 6.1. Let M be a (∗,∆)-matrix of size m×n, n ≥ 2∆− 1, that has the
C1P. Then every Circ1-ordering for M ’s columns is also a shifted C1-ordering.

Proof. Since M has the C1P, its columns can be permuted such that the result-
ing matrix M ′ has the shifted strong C1P. By definition, then M ′ also has the
strong Circ1P. We will prove the following claim:

Claim: Let M ′ be a matrix with the shifted strong C1P, and let M ′′ be
a matrix obtained from M ′ by applying the reverse operation to an arbitrary
circular module of M ′. Then M ′′ has the shifted strong C1P.

Due to Theorem 6.1, this claim suffices to prove the lemma, because every
Circ1-ordering for M ’s columns can be obtained from M ′ by a series of reverse

operations, and by the claim, none of these operations destroys the shifted strong
C1P.

Proof of the claim: Let C be the column set of M , and let c1, . . . , cn be the
column ordering of M ′ (which is a shifted C1-ordering). Moreover, let C ′ ⊆ C be
the circular module of M ′ whose reversal leads to M ′′. Since M ′ has the shifted
strong C1P, there is at least one C1-cut in M ′. Without loss of generality,
let (cn, c1) be this C1-cut, that is, there is no row ri in M ′ with mi,n = 1
and mi,1 = 1 and mi,j = 0 for at least one j ∈ {2, . . . , n − 1}.

If C ′ does not contain c1 and cn, then (cn, c1) clearly is still a C1-cut after
the reversal. Moreover, in this case M ′′ has also the strong Circ1P because, due
to the definition of a circular module, the reversal of C ′ does not destroy this
property. The shifted strong C1P and the existence of a C1-cut together imply
the shifted strong C1P of M ′′. If C ′ contains both of c1 and cn, we can argue
analogously because then (c1, cn) is a C1-cut in M ′′.

Now, assume that C ′ contains exactly one of c1 and cn, say c1. Then C ′ =
{c1, . . . , ch} with h < n, and M ′′ has the column ordering ch, . . . , c1, ch+1, . . . , cn.
Assume for the sake of contradiction that none of (cn, ch) and (c1, ch+1) is a
C1-cut in M ′′. Then there must be two rows ri1 and ri2 such that, on the
one hand, mi1,n = 1 and mi1,h = 1, and, on the other hand, mi2,1 = 1 and
mi2,h+1 = 1. Since (cn, c1) is a C1-cut in M ′, we have mi1,1 = 0 and mi2,n = 0.
Therefore, mi1,j = 1 for every j ∈ {h + 1, . . . , n − 1} and mi2,j = 1 for ev-
ery j ∈ {2, . . . , h}—otherwise, the set C ′ would not be a circular module.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Since there are at most ∆ 1s in each row, |{ch, . . . , cn}| ≤ ∆ and, therefore,
h > n − ∆ ≥ 2∆ − 1 − ∆ = ∆ − 1. For the same reason |{c1, . . . , ch+1}| ≤ ∆
and, therefore, h ≤ ∆−1, contradicting h > ∆−1. Hence, at least one of (cn, ch)
and (c1, ch+1) must be a C1-cut in M ′′, which implies the shifted strong C1P
of M ′′.

6.2. Solving Min-COS-C on Matrices with the Circ1P

Here, we show how to use the results of Section 6.1 to solve Min-COS-C on
matrices with the Circ1P. We first give an upper bound on the solution size for
Min-COS-C on matrices having the Circ1P and then, exploiting Lemma 6.1,
characterize the structure of optimal solutions for Min-COS-C and show how
to find them efficiently.

Lemma 6.2. Let M be a (∗,∆)-matrix that has the Circ1P. Then Min-COS-C

on input M can be solved by deleting at most ∆ columns.

Proof. Order the rows of M such that the resulting matrix M ′ has the strong
Circ1P. Since each row of M ′ contains at most ∆ 1s, the submatrix resulting
from removing the leftmost ∆ columns from M ′ has the (strong) C1P.

Now, we show that there is always an optimal solution for Min-COS-C

with some nice structure, provided that the input matrix has the strong Circ1P
and ∆ is small enough compared to n.

Lemma 6.3. Let M be a (∗,∆)-matrix of size m × n, n ≥ 3∆ − 1, that has
the strong Circ1P, let c1, . . . , cn be its column ordering, let the columns set C ′

be an optimal solution for Min-COS-C on input M , and let M ′ be the matrix
resulting from deleting C ′ from M .5 Then,

1. M ′ has the shifted strong C1P and

2. in the matrix M , the columns from C ′ are consecutive in a circular way,
and if cα and cβ are the two columns to the left and to the right of C ′,
(that is, cα, cβ /∈ C ′ and csuccn(α), cpredn(β) ∈ C ′), then (cα, cβ) is a C1-cut
in M ′.

Proof. The idea behind the proof is as follows: First, show that the matrix M ′

fulfills the conditions of Lemma 6.1. Hence, by deleting C ′ from M , one obtains
a matrix M ′ that does not only have the C1P, but also has the shifted strong
C1P, which proves (1). Then, show that this fact implies (2).

The details are as follows. Let cj1 , . . . , cjn′ be the columns of M ′, that is,
the columns of M that do not belong to C ′. Due to Lemma 6.2, |C ′| ≤ ∆,
and, therefore, M ′ has at least 2∆ − 1 columns. By Lemma 6.1, this implies
that M ′ has the shifted strong C1P, because the strong Circ1P is preserved
when deleting columns. This proves statement (1).

5When columns are deleted, the remaining columns retain the numbering scheme of the
original matrix.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

To prove statement (2), assume without loss of generality that (cjn′ , cj1) is
a C1-cut of M ′, that is, the column ordering cj1 , . . . , cjn′ places the 1s con-
secutively in every row. Suppose, for the sake of contradiction, that (2) does
not hold, that is, there exists a column cx ∈ C ′ such that when M is wrapped
around a vertical cylinder, the column cx appears to the right of cj1 and to the
left of cjn′ .

Let M ′′ be the matrix that results from M ′ by inserting the column cx at its
“old position”, that is, M ′′ results from M by deleting the columns C ′ \ {cx}.
Clearly, M ′′ has the strong Circ1P because M has the strong Circ1P. Moreover,
the insertion of cx into M ′ does not affect the fact that (cjn′ , cj1) is a C1-cut.
Hence, the matrix M ′′ also has the shifted strong C1P. This means that C ′ \
{cx} is also a solution of Min-COS-C, contradicting the optimality of C ′ as a
solution.

By Lemma 6.3, the columns of an optimal solution C ′ are consecutive in
every Circ1-ordering for M ’s columns. Hence, an optimal solution can easily be
found.

Theorem 6.2. Min-COS-C, restricted to (∗,∆)-matrices of size m × n that
have the Circ1P, can be solved in O((3∆)min{d,∆} ·∆m) time if n < 3∆−1, and
in O(∆mn) time otherwise, where d is the number of allowed column deletions.

Proof. Let M be a (∗,∆)-matrix of size m × n that has the Circ1P. Due to
Lemma 6.2, an optimal solution for Min-COS-C on M has size at most ∆.
If n < 3∆ − 1, then an optimal solution can be found by trying all possibilities
to delete at most min{d,∆} columns (there are

(

n
min{d,∆}

)

= O((3∆)min{d,∆})

possibilities) and checking in O(∆m + n) time [6] whether the resulting matrix
has the C1P. If n ≥ 3∆ − 1, then assume that M has the strong Circ1P (a
Circ1-ordering for M ’s columns can be found in O(∆m + n) time [6]). Due to
Lemma 6.3, there exists an optimal solution C ′ that is consecutive in the circular
ordering of M and that is enclosed by the columns of a C1-cut in the matrix
resulting from the deletion of C ′. This solution can be found by checking, for
every column pair (cj , cj′) with at most ∆ columns lying between cj and cj′ in
the circular ordering of M , whether the submatrix of M that consists of the
columns c1, . . . , cj , cj′ , . . . , cn has the strong C1P with (cj , cj′) being a C1-cut.
For such a check, simply test in O(m) time whether for every row ri at least
one of mi,j and mi,j′ is 0.

6.3. Solving Min-COS-R on Matrices with the Circ1P

In the case of Min-COS-R, we cannot upper-bound the size of an optimal
solution as we did in Lemma 6.2. However, Lemma 6.1 yields a characterization
of optimal solutions for Min-COS-R that is very similar to the one given in
Lemma 6.3 for Min-COS-C.

Lemma 6.4. Let M be a (∗,∆)-matrix of size m×n, n ≥ 2∆− 1, that has the
strong Circ1P, let the set R′ of rows be an optimal solution for Min-COS-R

on input M , let M ′ be the matrix that results from deleting R′ from M , and
let c1, . . . , cn be the column ordering of M and M ′. Then,

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

1. M ′ has the shifted strong C1P and

2. there is a C1-cut (cj , csuccn(j)) in M ′ such that

R′ = {ri | (1 ≤ i ≤ m)∧(ri contains 0s and 1s)∧(mi,j = mi,succn(j) = 1)}.

Proof. Lemma 6.1 implies that M ′ has the shifted strong C1P because M ′

obviously has the strong Circ1P. This proves (1). To prove (2), let (cj , csuccn(j))
be an arbitrary C1-cut in M ′. On the one hand, due to the definition of a
C1-cut, there can be no row in M ′ that contains 0s and 1s and that contains
a 1 in both cj and csuccn(j). Hence, all rows ri with mi,j = 1 and mi,succn(j) = 1
and mi,j′ = 0 for at least one j′ must be part of R′. On the other hand, suppose,
for the sake of contradiction, that there exists a row in R′ that contains only 1s
or only 0s or that does not contain a 1 in both cj and csuccn(j). Then, re-
inserting this row into M ′ results in a matrix that still has the strong C1P—a
contradiction to the optimality of R′.

In analogy to Min-COS-C (Theorem 6.2), an optimal solution can now
easily be found by exploiting Lemma 6.4.

Theorem 6.3. Min-COS-R, restricted to (∗,∆)-matrices of size m × n that

have the Circ1P, can be solved in O((2∆)2 min{d,4∆2} ·∆m) time if n < 2∆− 1,
and in O(mn) time otherwise, where d is the number of allowed row deletions.

Proof. Let M be a (∗,∆)-matrix of size m×n that has the Circ1P. If n < 2∆−1,
then first eliminate duplicate rows by assigning weights to the rows such that
every row gets as weight the number of its occurrences, and by deleting all
occurrences except for one of every row. The number of rows of the resulting
matrix is bounded from above by (2∆)2 because if M has the strong Circ1P, then
every row can be described uniquely by the index of the first and last column
containing a 1 in this row, which yields (2∆)2 possibilities. The task is now to
find a row set of minimum weight whose deletion yields the C1P. An optimal
solution can be found by trying all possibilities to delete at most min{d, (2∆)2}
rows and checking in O(∆m + n) time [6] whether the resulting matrix has the

C1P; the number of possibilities to try is
(

(2∆)2

min{d,(2∆)2}

)

.

If n ≥ 2∆− 1, then assume that M has the strong Circ1P (a Circ1-ordering
for M ’s columns can be found in O(∆m + n) time [6]). Due to Lemma 6.4, an
optimal solution can be found by counting for every column pair (cj , csuccn(j))
in O(m) time the number of rows ri with mi,j = 1 and mi,succn(j) = 1 and
mi,j′ = 0 for at least one j′; deleting these rows results in a matrix with C1-
cut (cj , csuccn(j)).

7. Algorithms for (∗, ∆)-Matrices

As sketched in the algorithmic skeleton of Section 3, our approximation
algorithms for Min-COS-C and Min-COS-R consist of two phases: First, they
search in every step for a matrix of the set X of forbidden submatrices given by

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Table 2: Summary of results for Min-COS-C and Min-COS-R on (∗, ∆)-matrices.

Approximation algorithms

Min-COS-C Factor Running time based on

∆ = 2 4 O(m2n3) Cor. 5.2, Lem. 6.2
∆ = 3 6 O(m3n2 + m2n4) Thm. 5.2, Lem. 6.2
∆ ≥ 4 ∆+2 O(∆3m3n2 + ∆3m2n4) Thm. 5.2, Lem. 6.2
∆ = 2, 5, 6, . . . ∆+4 O(∆mn3 + n4) Cor. 5.1, Lem. 6.2
∆ = 3, 4 9 O(mn3 + n4) Cor. 5.1, Lem. 6.2

Min-COS-R Factor Running time

∆ = 2 3 O(m3n2) Cor. 5.2, Thm. 6.3

∆ ≥ 3 ∆+1 O((2∆)8∆
2
· ∆m2 + ∆3m4n + ∆3m3n3) Thms. 5.2, 6.3

∆ = 2, 5, 6, . . . ∆+4 O((2∆)8∆
2
· ∆m2 + ∆m2n2 + mn3) Cor. 5.1, Thm. 6.3

∆ = 3, 4 9 O(m2n2 + mn3) Cor. 5.1, Thm. 6.3

Fixed-parameter algorithms

Min-COS-C Running time based on

∆ = 2 O(4d · m2n2) Cor. 5.2, Thm. 6.2

∆ = 3 O(6d · (m2n · (m + n2))) Thms. 5.2, 6.2

∆ ≥ 4 O((∆+2)d · ((3∆)min{d,∆} · ∆dm + ∆3m3n + ∆3m2n3)) Thms. 5.2, 6.2

∆ = 2, 5, 6, . . . O((∆+4)d · ((3∆)min{d,∆} · ∆dm + ∆mn2 + n3)) Cor. 5.1, Thm. 6.2

∆ = 3, 4 O(9d · (mn2 + n3)) Cor. 5.1, Thm. 6.2

Min-COS-R Running time

∆ = 2 O(3d · m2n2) Cor. 5.2, Thm. 6.3

∆ ≥ 3 O((∆+1)d · ((2∆)2·min{d,4∆2} · ∆dm + ∆3m3n + ∆3m2n3)) Thms. 5.2, 6.3

∆ = 2, 5, 6, . . . O((∆+4)d · ((2∆)2·min{d,4∆2} · ∆dm + ∆mn2 + n3)) Cor. 5.1, Thm. 6.3

∆ = 3, 4 O(9d · (mn2 + n3)) Cor. 5.1, Thm. 6.3

Theorem 3.1 and then delete all columns (rows) of the found submatrix. Since
an optimal solution has to delete at least one column (row) of every forbidden
submatrix from X, the approximation factor is bounded from above by the
maximum number of columns (rows) of a submatrix found during this phase.
Thereafter, due to Theorem 3.1, all components of the remaining matrix have
the Circ1P. In case of Min-COS-C, a solution of size at most ∆ can be found
for every component by permuting its columns such that the strong Circ1P
is obtained and then deleting the first ∆ columns (as shown in the proof of
Lemma 6.2)—clearly, this yields a factor-∆ approximation for every component.
The overall approximation factor is determined by the one achieved in the first
phase of the algorithm. In case of Min-COS-R, we do not have such a simple
factor-∆ approximation for solving the problem on the components of the matrix
resulting from the first phase. Hence, we use the approach of Theorem 6.3 for
exactly solving Min-COS-R on every component resulting from the first phase.
Note that to derive polynomial running times for fixed ∆, we can ignore the
term d in the running time of Theorem 6.3.

The fixed-parameter search tree algorithms look in every step for a for-
bidden submatrix of X and then branch on which column (row) belonging to
the found submatrix shall be deleted. The solution for the resulting matrices
without submatrices from X can be found without branching, see Theorem 6.2
(Theorem 6.3).

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

Theorem 7.1. Min-COS-C and Min-COS-R, restricted to (∗,∆)-matrices,
have constant-factor approximation algorithms as shown in Table 2. Moreover,
Min-COS-C and Min-COS-R are fixed-parameter tractable with respect to the
parameter d denoting the number of allowed column deletions and row deletions,
respectively. The running times are given in Table 2.

Proof. In the case of the approximation algorithms, the approximation factor is
determined by the number of columns (rows) of the submatrices found in the first
phase of the algorithm. If the algorithm in Fig. 7 is used for searching forbidden
submatrices from X, then the column number (row number) is determined by
Corollary 5.1. If, otherwise, the algorithm behind Theorem 5.2 (or Corollary 5.2
in the case of ∆ = 2) is used, then the column number (row number) is equal
to the maximum taken over the column numbers (row numbers) of the matrices
in X. Since at most n columns (m rows) can be deleted, the running time for
every algorithm is n times (m times) the time needed for searching a forbidden
submatrix (see Proposition 5.1, Theorem 5.2, and Corollary 5.2) plus n times
(m times) the time needed for approximating Min-COS-C (solving Min-COS-

R) on a component that has the Circ1P.
In case of the search-tree algorithms, the number of branches depends on

the maximum number of columns (rows) of a forbidden submatrix found during
the first phase of the algorithm, which destroys all submatrices from X, and is
either determined by Corollary 5.1 or by the maximum taken over the column
numbers (row numbers) of the matrices in X—depending on which algorithm
is used for searching the forbidden submatrices. The time needed in each node
of the search tree is given by the time needed to search for a submatrix from X
(see Proposition 5.1, Theorem 5.2, and Corollary 5.2) plus, in the case that no
submatrix from X was found, the time needed for solving Min-COS-C (Min-

COS-R) on at most d components that have the Circ1P.

8. (∗, 2)- and (2, ∗)-Matrices

Min-COS-R and Min-COS-C remain NP-hard on (∗, 2)-matrices and (2, ∗)-
matrices [8, 42]. However, for (∗, 2)-matrices a fruitful interaction with natural
graph problems can be exploited because then the 0/1-matrices have an inter-
pretation as graphs. This is the central observation used for our algorithmic
results concerning (∗, 2)-matrices. Since most of the observations used in this
section are fairly canonical, we only summarize our findings in an informal way
and refer to the first author’s PhD thesis [8] for any technical details.

We start with enumerating the (∗, 2)-matrix problems together with their
corresponding graph problems:

• Min-COS-C on (∗, 2)-matrices is equivalent to the problem of finding in
an undirected graph a minimum-cardinality set of vertices whose removal
leaves a union of vertex disjoint paths [42]. (Note that the removal of
vertices corresponds to the deletion of columns.)

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

• Min-COS-R on (∗, 2)-matrices is equivalent to the problem of finding in
an edge-weighted undirected graph a minimum-weight set of edges whose
removal leaves a union of vertex disjoint paths [8]. (Note that the removal
of edges corresponds to the deletion of rows.)

In the case of (2, ∗)-matrices, only Min-COS-C has a direct characteri-
zation as a graph problem: Given an edge-weighted undirected graph, find a
minimum-weight set of edges whose removal leaves a union of vertex disjoint
caterpillars [8, 42]. (A caterpillar is a tree in which every non-leaf vertex has at
most two non-leaf neighbors.) For obtaining algorithms for both Min-COS-C

and Min-COS-R on (2, ∗)-matrices, we do not use the graph interpretation of
these matrices, but the following approach: In a way very much analogous to
Theorem 3.1 one can show that if a (2, ∗)-matrix M without identical columns
does not contain an MIV or an MI1 and does not have the C1P, then M contains
pairwise disjoint MIk

matrices (and no other forbidden submatrices from T).
This characterization leads to almost straightforward search tree algorithms
and approximation algorithms (see [8] for the details).

Altogether, we state the following results for (∗, 2)- and (2, ∗)-matrices.

Theorem 8.1. 1. On (∗, 2)-matrices, Min-COS-C has a problem kernel
consisting of a matrix with O(d2) rows and columns, and Min-COS-R has
a problem kernel consisting of a matrix with less than 9d different rows,
less than 8d columns, and an overall number of at most 9d2 + 9d rows.

2. On (2, ∗)-matrices, Min-COS-C can be solved with a search tree algorithm
running in O(6d ·min{m4n,m2n3}) time, and Min-COS-R can be solved
with a search tree algorithm running in O(4d·min{m4n,m2n3}) time. Cor-
respondingly, there is a factor-6 polynomial-time approximation algorithm
for Min-COS-C and a factor-4 polynomial-time approximation algorithm
for Min-COS-R.

We close this section with a few comments on the proof of Theorem 8.1;
the details can be found in [8]. As to (1) in Theorem 8.1, note that simple
polynomial-time executable data reduction rules suffice to show the kernel [8]
(see also [15] for related graph problems). As to (2) in Theorem 8.1, note
that the exponential base 6 relates to the at most six columns to be deleted
from forbidden MIV- and MI1 -submatrices; similarly, the exponential base 4
relates to the at most four rows in these submatrices. Finally, we remark that
Min-COS-C on (∗, 2)-matrices without identical columns is equivalent to the
graph problem 2-Layer Planarization; see [13, 14, 40, 41] for results on this
problem.

9. Outlook

Our results mainly focus on Min-COS-C and Min-COS-R with no restric-
tion on the number of 1s in the columns; similar studies would be desirable
for the case that we have no restriction for the rows. Moreover, it should be

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

investigated whether the running times for Min-COS-R and Min-COS-C (see
Table 2) can be improved. In particular, we think that approximating Min-

COS-R with a factor of ∆ + 1 should be possible within a running time that is
polynomial in the input size and has no exponential factor depending on ∆. An
important research direction is to consider the problem Min-CO-1E (flipping
of 1-entries). We conjecture that for (∗,∆)-matrices the presented approxima-
tion and fixed-parameter tractability results should extend to Min-CO-1E—
however, we could not prove that. Only for ∆ = 2 we have algorithmic results
simply based on the equivalence to Min-COS-R in this case.

References

[1] E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall,
A. Meyer-Baese, and H. Zhang. Computing H/D-exchange speeds of sin-
gle residues from data of peptic fragments. In Proceedings of the 23rd
ACM Symposium on Applied Computing (SAC ’08), pages 1273–1277.
ACM Press, 2008.

[2] J. E. Atkins, E. G. Boman, and B. Hendrickson. A spectral algorithm for
seriation and the consecutive ones problem. SIAM Journal on Computing,
28(1):297–310, 1998.

[3] J. E. Atkins and M. Middendorf. On physical mapping and the consecutive
ones property for sparse matrices. Discrete Applied Mathematics, 71(1–
3):23–40, 1996.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Optimiza-
tion Problems and Their Approximability Properties. Springer, 1999.

[5] J. J. Bartholdi, III, J. B. Orlin, and H. D. Ratliff. Cyclic scheduling via
integer programs with circular ones. Operations Research, 28(5):1074–1085,
1980.

[6] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of
Computer and System Sciences, 13:335–379, 1976.

[7] T. Christof, M. Oswald, and G. Reinelt. Consecutive ones and a between-
ness problem in computational biology. In Proceedings of the 6th Interna-
tional Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO ’98), volume 1412 of LNCS, pages 213–228. Springer, 1998.

[8] M. Dom. Recognition, Generation, and Application of Binary Matrices
with the Consecutive-Ones Property. PhD thesis, Institut für Informatik,
Friedrich-Schiller-Universität Jena, Germany, 2008. Published by Cuvillier,
2009.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

[9] M. Dom. Algorithmic aspects of the consecutive-ones property. Bulletin
of the European Association for Theoretical Computer Science, 2009. To
appear.

[10] M. Dom, J. Guo, and R. Niedermeier. Approximability and parameterized
complexity of consecutive ones submatrix problems. In Proceedings of the
4th Annual Conference on Theory and Applications of Models of Compu-
tation (TAMC ’07), volume 4484 of LNCS, pages 680–691. Springer, 2007.

[11] M. Dom and R. Niedermeier. The search for consecutive ones submatri-
ces: Faster and more general. In Proceedings of the 3rd Algorithms and
Complexity in Durham (ACiD ’07) Workshop, volume 9 of Texts in Algo-
rithmics, pages 43–54. College Publications, 2007.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[13] V. Dujmovic, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. Mc-
Cartin, N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. White-
sides, and D. R. Wood. A fixed-parameter approach to 2-Layer Planariza-
tion. Algorithmica, 45(2):159–182, 2006.

[14] H. Fernau. Two-layer planarization: Improving on parameterized algorith-
mics. In Proceedings of the 31st Conference on Current Trends in Theory
and Practice of Informatics (SOFSEM ’05), volume 3381 of LNCS, pages
137–146. Springer, 2005.

[15] H. Fernau. Parameterized algorithmics for linear arrangement problems.
Discrete Applied Mathematics, 156(17):3166–3177, 2008.

[16] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[17] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15(3):835–855, 1965.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[19] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007.

[20] M. Habib, R. M. McConnell, C. Paul, and L. Viennot. Lex-BFS and parti-
tion refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Science,
234(1–2):59–84, 2000.

[21] M. Hajiaghayi. Consecutive ones property. Manuscript, School of Computer
Science, University of Waterloo, Canada, 2000.

[22] M. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix
problem. Information Processing Letters, 83(3):163–166, 2002.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

[23] R. Hassin and N. Megiddo. Approximation algorithms for hitting objects
with straight lines. Discrete Applied Mathematics, 30:29–42, 1991.

[24] D. S. Hochbaum and A. Levin. Cyclical scheduling and multi-shift schedul-
ing: Complexity and approximation algorithms. Discrete Optimization,
3(4):327–340, 2006.

[25] W.-L. Hsu. A simple test for the consecutive ones property. Journal of
Algorithms, 43(1):1–16, 2002.

[26] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements.
Theoretical Computer Science, 296(1):99–116, 2003.

[27] S. Khot and O. Regev. Vertex cover might be hard to approximate to
within 2 − ǫ. Journal of Computer and System Sciences, 74(3):335–349,
2008.

[28] E. Köhler. Recognizing graphs without asteroidal triples. Journal of Dis-
crete Algorithms, 2(4):439–452, 2004.

[29] N. Korte and R. H. Möhring. An incremental linear-time algorithm for
recognizing interval graphs. SIAM Journal on Computing, 18(1):68–81,
1989.

[30] L. T. Kou. Polynomial complete consecutive information retrieval prob-
lems. SIAM Journal on Computing, 6(1):67–75, 1977.

[31] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. Spinrad. Certifying
algorithms for recognizing interval graphs and permutation graphs. SIAM
Journal on Computing, 36(2):326–353, 2006.

[32] R. M. McConnell. A certifying algorithm for the consecutive-ones property.
In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’04), pages 768–777. ACM Press, 2004.

[33] S. Mecke, A. Schöbel, and D. Wagner. Station location – complexity and
approximation. In Proceedings of the 5th Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS ’05). IBFI Dagstuhl,
Germany, 2005.

[34] S. Mecke and D. Wagner. Solving geometric covering problems by data
reduction. In Proceedings of the 12th Annual European Symposium on
Algorithms (ESA ’04), volume 3221 of LNCS, pages 760–771. Springer,
2004.

[35] J. Meidanis, O. Porto, and G. P. Telles. On the consecutive ones property.
Discrete Applied Mathematics, 88:325–354, 1998.

[36] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

Originally published in Journal of Computer and System Sciences, 76(3–4):204–221. Elsevier B. V., 2010.

[37] M. Oswald and G. Reinelt. The weighted consecutive ones problem for a
fixed number of rows or columns. Operations Research Letters, 31(3):350–
356, 2003.

[38] M. Oswald and G. Reinelt. The simultaneous consecutive ones problem.
Theoretical Computer Science, 410(21–23):1986–1992, 2009.

[39] N. Ruf and A. Schöbel. Set covering with almost consecutive ones property.
Discrete Optimization, 1(2):215–228, 2004.

[40] M. Suderman. Layered Graph Drawing. PhD thesis, School of Computer
Science, McGill University Montréal, Canada, 2005.

[41] M. Suderman and S. Whitesides. Experiments with the fixed-parameter
approach for two-layer planarization. In Proceedings of the 11th Interna-
tional Symposium on Graph Drawing (GD ’03), volume 2912 of LNCS,
pages 345–356. Springer, 2003.

[42] J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse
matrices. Algorithmica, 48(3):287–299, 2007.

[43] A. C. Tucker. Matrix characterizations of circular-arc graphs. Pacific Jour-
nal of Mathematics, 2(39):535–545, 1971.

[44] A. C. Tucker. A structure theorem for the consecutive 1’s property. Journal
of Combinatorial Theory. Series B, 12:153–162, 1972.

[45] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[46] A. F. Veinott and H. M. Wagner. Optimal capacity scheduling. Operations
Research, 10:518–547, 1962.

[47] M. Veldhorst. Approximation of the consecutive ones matrix augmentation
problem. SIAM Journal on Computing, 14(3):709–729, 1985.

