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Abstract. In parameterized complexity each problem instance comes
with a parameter k, and a parameterized problem is said to admit a
polynomial kernel if there are polynomial time preprocessing rules that
reduce the input instance to an instance with size polynomial in k. Many
problems have been shown to admit polynomial kernels, but it is only
recently that a framework for showing the non-existence of polynomial
kernels has been developed by Bodlaender et al. [4] and Fortnow and
Santhanam [9]. In this paper we show how to combine these results with
combinatorial reductions which use colors and IDs in order to prove
kernelization lower bounds for a variety of basic problems:
—We show that the Steiner Tree problem parameterized by the num-
ber of terminals and solution size k, and the Connected Vertex Cover

and Capacitated Vertex Cover problems do not admit a polynomial
kernel. The two latter results are surprising because the closely related
Vertex Cover problem admits a kernel of size 2k.
—Alon and Gutner obtain a kpoly(h) kernel for Dominating Set in H-

Minor Free Graphs parameterized by h = |H| and solution size k and
ask whether kernels of smaller size exist [2]. We partially resolve this
question by showing that Dominating Set in H-Minor Free Graphs

does not admit a kernel with size polynomial in k + h.
—Harnik and Naor obtain a “compression algorithm” for the Sparse

Subset Sum problem [13]. We show that their algorithm is essentially
optimal since the instances cannot be compressed further.
—Hitting Set and Set Cover admit a kernel of size kO(d) when pa-
rameterized by solution size k and maximum set size d. We show that
neither of them, along with the Unique Coverage and Bounded Rank

Disjoint Sets problems, admits a polynomial kernel.
All results are under the assumption that the polynomial hierarchy does
not collapse to the third level. The existence of polynomial kernels for
several of the problems mentioned above were open problems explicitly
stated in the literature [2, 3, 11, 12, 14]. Many of our results also rule out
the existence of compression algorithms, a notion similar to kernelization
defined by Harnik and Naor [13], for the problems in question.

1 Introduction

Polynomial time preprocessing to reduce instance size is one of the most widely
used approaches to tackle computationally hard problems. A natural question
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in this regard is how to measure the quality of preprocessing rules. Parameter-
ized complexity provides a natural mathematical framework to give performance
guarantees of preprocessing rules: A parameterized problem is said to admit a
polynomial kernel if there is a polynomial time algorithm, called a kernelization,
that reduces the input instance to an instance with size bounded by a polyno-
mial p(k) in the parameter k, while preserving the answer. This reduced instance
is called a p(k) kernel for the problem. (See [6, 8, 15] for further introductions.)
While positive kernelization results have appeared regularly over the last two
decades, the first results establishing infeasibility of polynomial kernels for spe-
cific problems have appeared only recently. In particular, Bodlaender et al. [4]
and Fortnow and Santhanam [9] have developed a framework for showing that
a problem does not admit a polynomial kernel unless the polynomial hierarchy
collapses to the third level (PH = Σ3

p), which is deemed unlikely.
Bodlaender et al. [4] observed that their framework can be directly applied

to show kernelization lower bounds for many parameterized problems, including
Longest Path and Longest Cycle. To the authors’ best knowledge, the only
non-trivial applications of this framework are in a recent result of Fernau et al. [7]
showing that the Directed Max Leaf Out-Branching problem does not
have a polynomial kernel, and a result by Bodlaender et al. [5] showing that the
Disjoint Paths and Disjoint Cycles problems do not admit a polynomial
kernel unless PH = Σ3

p .

Our Results & Techniques. At present, there are two ways of showing that a
particular problem does not admit a polynomial kernel unless PH = Σ3

p . One
is to give a “composition algorithm” for the problem in question. The other is
to reduce from a problem for which a kernelization lower bound is known to the
problem in question, such that a polynomial kernel for the considered problem
would transfer to a polynomial kernel for the problem we reduced from. Such a
reduction is called a polynomial parameter transformation and was introduced by
Bodlaender et al. [5]. In order to show our results, we apply both methods. First,
we present in Section 3 a “cookbook” approach for showing kernelization lower
bounds by using composition algorithms together with polynomial parameter
transformations. In the subsequent sections, we apply our approach to show
that Unique Coverage parameterized by solution size k and Hitting Set

and Set Cover parameterized by solution size k and universe size |U | do not
admit polynomial kernels unless PH = Σ3

p . These problems turn out to be useful
starting points for polynomial parameter transformations, showing that a variety
of basic problems do not have a polynomial kernel. All our results summarized
below are under the assumption that PH 6= Σ3

p and unless explicitly stated
otherwise, all the problems considered are parameterized by the solution size.
Connectivity and Covering Problems: In Section 4, we show that the Set Cover

problem parameterized by solution size k and the size |U | of the universe does
not have a polynomial kernel. Using this result, we prove that Steiner Tree

parameterized by the number of terminals and solution size k does not have
a polynomial kernel, resolving an open problem stated in [3]. We proceed to
show that the Connected Vertex Cover and Capacitated Vertex Cover
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problems do not admit a polynomial kernel for the parameter k. The existence of
polynomial kernels for these problems was an open problem explicitly stated in
the literature [11, 12], and the negative answer is surprising because the closely
related Vertex Cover problem admits a kernel of size 2k. Finally, Bounded

Rank Disjoint Sets and Unique Coverage do not admit a polynomial ker-
nel. The latter result resolves an open problem of Moser et al. [14].
Domination and Transversals: In Section 5, we show that the Hitting Set

problem parameterized by solution size k and the size |U | of the universe does
not have a polynomial kernel. This implies that the Dominating Set problem
parameterized by solution size k and the size of a minimum vertex cover of
the input graph does not admit a polynomial kernel. The latter result in turn
implies that Dominating Set in H-Minor Free Graphs parameterized by
h = |H| and k does not admit kernel with size polynomial in k + h, partially
resolving an open problem by Alon and Gutner [2], who obtain a kpoly(h) kernel
for Dominating Set in H-Minor Free Graphs and ask whether kernels of
smaller size exist. Another implication of the results in Sections 4 and 5 is that
the Hitting Set and Set Cover problems parameterized by solution size k
and maximum set size d do not have a kernel polynomial in k, d. Both Hitting

Set and Set Cover admit a kO(d) kernel [1].
Numeric Problems: Harnik and Naor obtain a compression algorithm for the
Sparse Subset Sum problem [13]. Essentially, Harnik and Naor show that if
the input instance to Subset Sum is a relatively small set of huge numbers,
the instance can be reduced. In Section 6, we show in contrast that if the input
instance is a huge set of relatively small numbers, the instance cannot be reduced.

Harnik and Naor [13] define compression, a notion with applications in cryp-
tography and similar to kernelization in spirit. It is implicit from the discussion
in [9] that for a large class of problems the notions of kernelization and com-
pression are equivalent. Due to this, our kernelization lower bounds imply that
several of the problems we considered do not admit compression to a language in
NP. These problems are Connected Vertex Cover, Capacitated Vertex

Cover, Steiner Tree, Unique Coverage, and Small Subset Sum.

2 Preliminaries

A parameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ.
An instance of a parameterized problem consists of (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed parameter
tractability (FPT), which means solvability in time f(k) · p(|x|) for any instance
(x, k), where f is an arbitrary function of k and p is a polynomial.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameter-
ized problem Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs
in time polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Q
if and only if (x′, k′) ∈ Q and (b) |x′| + k′ ≤ g(k), where g is an arbitrary com-
putable function. The function g is referred to as the size of the kernel. If g is a
polynomial function then we say that Q admits a polynomial kernel.
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Definition 2. [Composition [4]] A composition algorithm for a parameterized
problem L ⊆ Σ∗×N is an algorithm that receives as input a sequence ((x1, k), . . . ,
(xt, k)), with (xi, k) ∈ Σ∗ × N

+ for each 1 ≤ i ≤ t, uses time polynomial in∑t

i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N
+ with (a) (y, k′) ∈ L ⇐⇒ (xi, k) ∈

L for some 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is
compositional if there is a composition algorithm for it.

We utilize a recent result of Bodlaender et al. [4] and Fortnow and Santhanam [9]
concerning the non-existence of polynomial kernels. To this end, we define the
unparameterized version L̃ of a parameterized problem L as the language L̃ =
{x#1k | (x, k) ∈ L}, that is, the mapping of parameterized problems to unpa-
rameterized problems is done by mapping an instance (x, k) to the string x#1k,
where 1 is an arbitrary fixed letter in Σ and # /∈ Σ.

Theorem 1 ([4, 9]). Let L be a compositional parameterized problem whose

unparameterized version L̃ is NP-complete. Then, unless PH=Σ3
p , there is no

polynomial kernel for L.

Finally we define the notion of polynomial parameter transformations.

Definition 3 ([5]). Let P and Q be parameterized problems. We say that P
is polynomial parameter reducible to Q, written P ≤Ptp Q, if there exists a
polynomial time computable function f : Σ∗ ×N → Σ∗ ×N and a polynomial p,
such that for all (x, k) ∈ Σ∗×N (a) (x, k) ∈ P if and only (x′, k′) = f(x, k) ∈ Q
and (b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 1 ([5]). Let P and Q be the parameterized problems and P̃ and
Q̃ be the unparameterized versions of P and Q respectively. Suppose that P̃
is NP-hard and Q̃ is in NP. Furthermore if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel then P also has
a polynomial kernel.

A notion similar to polynomial parameter transformation was independently
used by Fernau et al. [7] albeit without being explicitly defined.

We close with some definitions from graph theory. For a vertex v in a graph G,
we write NG(v) to denote the set of v’s neighbors in G, and we write degG(v) to
denote the degree of v. The subgraph of G induced by a vertex set V ′ is denoted
with G[V ′]. A vertex v dominates a vertex u if u ∈ NG(v).

3 A Systematic Approach to Prove Kernelization Lower

Bounds

In this section we describe a “cookbook” for showing kernelization and com-
pressibility lower bounds. To show that a problem does not admit a polynomial
size kernel we go through the following steps.
1. Define a suitable colored version of the problem. This is in order to get more
control over how solutions to problem instances can look.
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2. Show that the unparameterized version of the considered problem is in NP
and that the unparameterized version of the colored version of the problem is
NP-hard.

3. Give a polynomial parameter transformation from the colored to the uncolored
version. This will imply that kernelization lower bounds for the colored version
directly transfer to the original problem.

4. Show that the colored version parameterized by k is solvable in time 2kc

·nO(1)

for a fixed constant c.

5. Finally, show that the colored version is compositional and thus has no poly-
nomial kernel. To do so, proceed as follows.

(a) If the number of instances in the input to the composition algorithm is at
least 2kc

then running the parameterized algorithm on each instance takes time
polynomial in input size. This automatically yields a composition algorithm [5].

(b) If the number of instances is less than 2kc

, every instance receives a unique
identifier. Notice that in order to uniquely code the identifiers (ID) of all in-
stances, kc bits per instance is sufficient. The IDs are coded either as an integer,
or as a subset of a poly(k) sized set.

(c) Use the coding power provided by colors and IDs to complete the composition
algorithm.

4 Connectivity and Covering Problems

Set Cover, Steiner Tree, and Variants of Vertex Cover. The problems Steiner

Tree, Connected Vertex Cover (ConVC), Capacitated Vertex Cover

(CapVC), and Small Universe Set Cover are defined as follows. In Steiner

Tree we are given a graph G = (T ∪ N,E) and an integer k and asked for a
vertex set N ′ ⊆ N of size at most k such that G[T ∪N ′] is connected. In ConVC

we are given a graph G = (V,E) and an integer k and asked for a vertex cover
of size at most k that induces a connected subgraph in G. A vertex cover is a
set C ⊆ V such that each edge in E has at least one endpoint in C. The problem
CapVC takes as input a graph G = (V,E), a capacity function cap : V → N

+

and an integer k, and the task is to find a vertex cover C and a mapping from E
to C in such a way that at most cap(v) edges are mapped to every vertex v ∈ C.
Finally, an instance of Small Universe Set Cover consists of a set family F
over a universe U with |U | ≤ d and a positive integer k. The task is to find a
subfamily F ′ ⊆ F of size at most k such that ∪S∈F ′S = U . All four problems
are known to be NP-complete (e.g., see [10] and the proof of Theorem 2); in
this section, we show that the problems do not admit polynomial kernels for the
parameter (|T |, k) (in the case of Steiner Tree), k (in the case of ConVC and
CapVC), and (d, k) (in the case of Small Universe Set Cover), respectively.
To this end, we first use the framework presented in Section 3 to prove that
another problem, which is called RBDS, does not have a polynomial kernel.
Then, by giving polynomial parameter transformations from RBDS to the above
problems, we show the non-existence of polynomial kernels for these problems.
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In Red-Blue Dominating Set (RBDS) we are given a bipartite graph
G = (T ∪ N,E) and an integer k and asked whether there exists a vertex
set N ′ ⊆ N of size at most k such that every vertex in T has at least one
neighbor in N ′. We show that RBDS parameterized by (|T |, k) does not have a
polynomial kernel. In the literature, the sets T and N are called “blue vertices”
and “red vertices”, respectively. In this paper we will call the vertices “terminals”
and “nonterminals” in order to avoid confusion with the colored version of the
problem that we are going to introduce. RBDS is equivalent to Set Cover and
Hitting Set and, therefore, NP-complete [10]. In the colored version of RBDS,
denoted by Colored Red-Blue Dominating Set (Col-RBDS), the vertices
of N are colored with colors chosen from {1, . . . , k}, that is, we are additionally
given a function col : N → {1, . . . , k}, and N ′ is required to contain exactly one
vertex of each color. We will now follow the framework from Section 3.

Lemma 1. [⋆]3 (1) The unparameterized version of RBDS is in NP, and the
unparameterized version of Col-RBDS is NP-hard. (2) There is a polynomial
parameter transformation from Col-RBDS to RBDS. (3) Col-RBDS is solv-
able in 2|T |+k · |T ∪ N |O(1) time.

Lemma 2. Col-RBDS parameterized by (|T |, k) is compositional.

Proof. For a sequence (G1 = (T1∪N1, E1), k, col1), . . . , (Gt = (Tt∪Nt, Et), k, colt)
of Col-RBDS instances with |T1| = |T2| = . . . = |Tt| = p, we show how to con-
struct a Col-RBDS instance (G = (T∪N,E), k, col) as described in Definition 2.

For i ∈ {1, . . . , t}, let Ti := {ui
1, . . . , u

i
p} and Ni := {vi

1, . . . , v
i
qi
}. We start

with adding p vertices u1, . . . , up to the set T of terminals to be constructed. (We
will add more vertices to T later.) Next, we add to the set N of nonterminals
all vertices from the vertex sets N1, . . . , Nt, preserving the colors of the vertices.
That is, we set N =

⋃
i∈{1,...,t} Ni, and col(vi

j) = coli(v
i
j). Now, we add the edge

set
⋃

i∈{1,...,t}

{
{uj1 , v

i
j2
} | {ui

j1
, vi

j2
} ∈ Ei

}
to G (see Figure 1). The graph G and

the coloring col constructed so far have the following property: If at least one
of (G1, k, col1), . . . , (Gt, k, colt) is a yes-instance, then (G, k, col) is also a yes-
instance. However, (G, k, col) may even be a yes-instance in the case where all
instances (G1, k, col1), . . . , (Gt, k, colt) are no-instances, because in G one can
select vertices into the solution that originate from different instances of the
input sequence.

To ensure the correctness of the composition, we add more vertices and
edges to G. We define for every graph Gi of the input sequence a unique
identifier ID(Gi), which consists of a size-(p + k) subset of {1, . . . , 2(p + k)}.

Since
(
2(p+k)

p+k

)
≥ 2p+k and since we can assume that the input sequence does not

contain more than 2p+k instances, it is always possible to assign unique identifiers
to all instances of the input sequence. For each color pair (a, b) ∈ {1, . . . , k} ×

{1, . . . , k} with a 6= b, we add a vertex set W(a,b) = {w
(a,b)
1 , . . . , w

(a,b)
2(p+k)} to T ,

3 Proofs of results labelled with [⋆] have been omitted, whole or in part.
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4 . . . w
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7

ID(G1) =

{1, 2, 5, 7}

ID(G2) =

{2, 6, 7, 8}

N

Fig. 1. Example for the composition algorithm for Col-RBDS. The upper part of the
figure shows an input sequence consisting of two instances with k = 3 (there are three
colors: white, checkered, and black). The lower part of the figure shows the output of
the composition algorithm. For the sake of clarity, only the vertex set W(white,black) is
displayed, whereas five other vertex sets W(a,b) with a, b ∈ {white, checkered, black}
are omitted. Since k = 3 and p = 5, each ID should consist of eight numbers,
and W(white,black) should contain 16 vertices. For the sake of clarity, the displayed
IDs consist of only four numbers each, and W(white,black) contains only eight vertices.

(see Figure 1), and we add to E the edge set

⋃

i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1
, w

(a,b)
j2

} | a = col(vi
j1

) ∧ b 6= a ∧ j2 ∈ ID(Gi)
}

∪

⋃

i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1
, w

(a,b)
j2

} | b = col(vi
j1

) ∧ a 6= b ∧ j2 /∈ ID(Gi)
}

.

Note that the construction conforms to the definition of a composition algo-
rithm; in particular, k remains unchanged and the size of T is polynomial in p, k
because |T | = p + k(k − 1) · 2(p + k). To prove the correctness of the construc-
tion, we show that (G, k, col) has a solution N ′ ⊆ N if and only if at least one
instance (Gi, k, coli) from the input sequence has a solution N ′

i ⊆ Ni.
In one direction, if N ′

i ⊆ Ni is a solution for (Gi, k, coli), then the same vertex
set chosen from N forms a solution for (G, k, col). To see this, note that for every
color pair (a, b) ∈ {1, . . . , k} × {1, . . . , k} with a 6= b, each vertex from W(a,b) is
either connected to all vertices v from Ni with col(v) = a or to all vertices v
from Ni with col(v) = b.

In the other direction, to show that any solution N ′ ⊆ N for (G, k, col) is a
solution for at least one instance (Gi, k, coli), we prove that N ′ cannot contain
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vertices originating from different instances of the input sequence. To this end,
note that each two vertices in N ′ must have different colors: Assume, for the sake
of a contradiction, that N ′ contains a vertex vi1

j1
with col(vi1

j1
) = a originating

from the instance (Gi1 , k, coli1) and a vertex vi2
j2

with col(vi2
j2

) = b originating
from a different instance (Gi2 , k, coli2). Due to the construction of the IDs, we

have ID(Gi1)\ ID(Gi2) 6= ∅ and ID(Gi2)\ ID(Gi1) 6= ∅. No vertex w
(a,b)
j with j ∈

ID(Gi2) \ ID(Gi1) and no vertex w
(b,a)
j with j ∈ ID(Gi1) \ ID(Gi2) is adjacent

to one of vi1
j1

and vi2
j2

. Therefore, N ′ does not dominate all vertices from T—a
contradiction. ⊓⊔

Theorem 2. The problems Red-Blue Dominating Set and Steiner Tree,
both parameterized by (|T |, k), the problems Connected Vertex Cover and
Capacitated Vertex Cover, both parameterized by k, the problem Small

Universe Set Cover parameterized by (k, d), and the problem Set Cover

parameterized by solution size k and the maximum size of any set in F do not
admit polynomial kernels unless PH = Σ3

p .

Proof. For RBDS the statement of the theorem follows directly by Theorem 1
together with Lemmata 1 and 2.

To show that the statement is true for the other four problems, we give
polynomial parameter transformations from RBDS to each of them—due to
Proposition 1, this suffices to prove the statement. Let (G = (T ∪ N,E), k) be
an instance of RBDS. To transform it into an instance (G′ = (T ′ ∪ N,E′), k)
of Steiner Tree, define T ′ = T ∪ {ũ} where ũ is a new vertex and let E′ =
E ∪ {{ũ, vi} | vi ∈ N}. It is easy to see that every solution for Steiner Tree

on (G′, k) one-to-one corresponds to a solution for RBDS on (G, k).
To transform (G, k) into an instance (G′′ = (V ′′, E′′), k′′) of ConVC, first

construct the graph G′ = (T ′ ∪ N,E′) as described above. The graph G′′ is
then obtained from G′ by attaching a leaf to every vertex in T ′. Now, G′′ has a
connected vertex cover of size k′′ = |T ′| + k = |T | + 1 + k iff G′ has a Steiner
tree containing k vertices from N iff all vertices from T can be dominated in G
by k vertices from N .

Next, we describe how to transform (G, k) into an instance (G′′′ = (V ′′′, E′′′),
cap, k′′′) of CapVC. First, for each vertex ui ∈ T , add a clique to G′′′ that
contains four vertices u0

i , u
1
i , u

2
i , u

3
i . Second, for each vertex vi ∈ N , add a ver-

tex v′′′
i to G′′′. Finally, for each edge {ui, vj} ∈ E with ui ∈ T and vj ∈ N ,

add the edge {u0
i , v

′′′
j } to G′′′. The capacities of the vertices are defined as fol-

lows: For each vertex ui ∈ T , the vertices u1
i , u

2
i , u

3
i ∈ V ′′′ have capacity 1 and

the vertex u0
i ∈ V ′′′ has capacity degG′′′(u0

i ) − 1. Each vertex v′′′
i has capac-

ity degG′′′(v′′′
i ). Clearly, in order to cover the edges of the size-4 cliques inserted

for the vertices of T , every capacitated vertex cover for G′′′ must contain all
vertices u0

i , u
1
i , u

2
i , u

3
i . Moreover, since the capacity of each vertex u0

i is too small
to cover all edges incident to u0

i , at least one neighbor v′′′
j of u0

i must be selected
into every capacitated vertex cover for G′′′. Therefore, it is not hard to see that
G′′′ has a capacitated vertex cover of size k′′′ = 4 · |T |+ k iff all vertices from T
can be dominated in G by k vertices from N .
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The results for Small Universe Set Cover and Set Cover follow from
the equivalence of Set Cover and RBDS. ⊓⊔

Unique Coverage. In the Unique Coverage problem we are given a universe
U , a family of sets F over U and an integer k. The problem is to find a subfamily
F ′ of F and a set S of elements in U such that |S| ≥ k and every element of
S appears in exactly one set in F ′, that is, the number of elements uniquely
covered by F ′ is at least k.

In order to obtain our negative results we have to utilize positive kernelization
results for the problem. In some sense, we have to compress our instances as much
as possible in order to show that what remains is incompressible even though
it is big. We utilize the following well-known and simple reduction rules for the
problem: (a) If any set S ∈ F contains at least k elements, return yes; (b) If any
element e is not contained in any set in F , remove e from U ; and (c) If none of
the above rules can be applied and |U | ≥ k(k − 1) return yes.

We show that the Unique Coverage problem does not have a polynomial
kernel unless PH=Σ3

p . Notice that while the above reduction rules will compress
the instance to an instance with at most O(k2) elements, this is not a polynomial
kernel because there is no polynomial bound on the size of F . We start by
defining the colorful reduced version Colored Reduced Unique Coverage

(Col-Red-UC) of the Unique Coverage problem. In this version the sets of
F are colored with colors from {1, . . . , k} and F ′ is required to contain exactly
one set of each color. Furthermore, in Col-Red-UC every set S in F has size
at most k − 1 and |U | ≤ k2.

Lemma 3. [⋆] (1) The unparameterized version of Unique Coverage is in
NP, and the unparameterized version of Col-Red-UC is NP-hard. (2) There
is a polynomial parameter transformation from Col-Red-UC to Unique Cov-

erage. (3) Col-Red-UC parameterized by k is solvable in time O(k2k2

).

Lemma 4. [⋆] The Col-Red-UC problem is compositional.

Proof. Given a sequence of Col-Red-UC instances I1 = (U,F1, k), . . . , It =
(U,Ft, k), we construct a Col-Red-UC instance I = (U ′,F , k′). If the number

of instances t is at least 22k2 log k then running the algorithm from Lemma 3 on all
instances takes time polynomial in the input size yielding a trivial composition
algorithm. Thus we assume that t is at most 22k2 log k. We now construct ID’s for
for every instance, this is done in two steps. In the first step every instance i gets
a unique small id ID′(Ii) which is a subset of size k3/2 of the set {1, . . . , k3}.
The identifier of instance i is the set ID(Ii) which is defined to be ID(Ii) = {x ∈
N : ⌊x/k3⌋ ∈ ID′(Ii)}. In other words, ID(Ii) = {k3 · j + j′ | j ∈ ID′(Ii) ∧ j′ ∈
{0, . . . , k3 − 1}}. Notice that the identifier of every instance is now a subset of
size k6/2 of the set {1, . . . , k6} and that the IDs of two different instances differ
in at least k3 places.

We start building the instance I by letting U ′ = U and F = F1∪F2 . . .∪Ft.
The sets have the same color as in their respective instance. For every distinct
ordered pair of colors i, j ≤ k we add the set Ui,j = {u1

i,j , . . . , u
k6

i,j} to U ′. For
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every instance Ip we consider the sets colored i and j respectively in Fp. To
every set S with color i in Fp we add the set {ux

i,j : x ∈ ID(Ip)}. Also, to every
set S with color j in Fp we add the set {ux

i,j : x /∈ ID(Ip)}. Finally we set

k′ = k(k − 1)k6 + k. This concludes the construction. The correctness proof is
omitted. ⊓⊔

Theorem 3. The Unique Coverage problem parameterized by k does not
admit a polynomial kernel unless PH = Σ3

p .

Bounded Rank Disjoint Sets. In the Bounded Rank Disjoint Sets problem
we are given a family F over a universe U with every set S ∈ F having size at
most d together with a positive integer k. The question is whether there exists a
subfamily F ′ of F with |F ′| ≥ k such that for every pair of sets S1, S2 ∈ F ′ we
have that S1∩S2 = ∅. The problem can be solved in time 2O(dk)nO(1) using color-
coding and an application of dk-perfect hash families. To show that this problem
does not admit a poly(k, d) kernel, we define a variation of the Perfect Code

problem on graphs: In Bipartite Regular Perfect Code we are given a
bipartite graph G = (T ∪ N,E), where every vertex in N has the same degree,
and an integer k and asked whether there exists a vertex set N ′ ⊆ N of size at
most k such that every vertex in T has exactly one neighbor in N ′.

Theorem 4. [⋆] Bipartite Regular Perfect Code parameterized by (|T |, k)
and Bounded Rank Disjoint Sets parameterized by (d, k) do not have a poly-
nomial kernel unless PH = Σ3

p .

5 Domination and Transversals

In the Small Universe Hitting Set problem we are given a set family F over
a universe U with |U | ≤ d together with a positive integer k. The question is
whether there exists a subset S in U of size at most k such that every set in F has
a non-empty intersection with S. We show that the Small Universe Hitting

Set problem parameterized by the solution size k and the size d = |U | of the
universe does not have a kernel of size polynomial in (k, d) unless PH = Σ3

p .
We define the colored version of Small Universe Hitting Set, called Col-

SUHS as follows. We are given a set family F over a universe U with |U | ≤ d,
and a positive integer k. The elements of U are colored with colors from the set
{1, . . . , k} and the question is whether there exists a subset S ⊆ U containing
exactly one element of each color such that every set in F has a non-empty
intersection with S.

Lemma 5. [⋆] (1) The unparameterized version of Small Universe Hitting

Set is in NP, and the unparameterized version of Col-SUHS is NP-hard. (2)
There is a polynomial parameter transformation from Col-SUHS to Small

Universe Hitting Set. (3) Col-SUHS parameterized by d, k is solvable in
time O(2d · nO(1)).

Lemma 6. The problem Col-SUHS is compositional.
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Proof. Given a sequence (F1, U, d, k), . . . , (Ft, U, d, k) of Col-SUHS instances
where |U | ≤ d, we construct an instance (F , U ′, d′, k′) of Col-SUHS as de-
scribed in Definition 2. Due to the time-O(2d · nO(1)) algorithm from Lemma 5,
we can assume that t ≤ 2d. Furthermore, we need the number of instances to be
a power of 2. To make this true we add an appropriate number of no-instances,
such that the total number of instances is 2l. Since t ≤ 2d we have that l ≤ d.
Now, let every instance be identified by a unique number from 0 to t − 1.

We let k′ = k+l and start building (F , U ′, d′, k′) from (F1, U, d, k), . . . , (Ft, U,
d, k) by letting U ′ = U and letting elements keep their color. For every i ≤ t
we add the family Fi to F . We now add 2l new elements C = {a1, b1, . . . , al, bl}
to U ′ and for every i ≤ l, {ai, bi} comprise a new color class. We conclude the
construction by modifying the sets in F that came from the input instances
to the composition algorithm. For every j ≤ t we consider all sets in Fj . For
every such set S we proceed as follows. Let ID(j) be the identification number
of instance number j. For every i ≤ l we look at the i’th bit in the binary
representation of ID(j). If this bit is set to 1 we add ai to S and if the bit is set
to 0 we add bi to S. This concludes the construction.

Now, if there is a colored hitting set S for Fj with |S| ≤ k, one can construct
a colored hitting set S′ for F of size k + l as follows. First, add S to S′ and
then consider the identification number ID(j) of instance j. For every i between
1 and l consider the i’th bit of ID(j). If this bit is set to 1 add bj to S′ else add
aj to S′. Clearly S′ is a hitting set for Fi, has size k + l and contains one vertex
of each color. Moreover, one can easily prove that S′ hits all other sets of F .

In the other direction, suppose there is a colored hitting set S′ of size l + k
of F . For every i ≤ l, exactly one out of the vertices ai and bi is in S′. Let p be
the number between 0 and 2l −1 such that for every i the i’th bit of p is 1 if and
only if bi ∈ S′. Observe that the sets in F originating from the family Fj such
that ID(j) = p do not contain any of the elements of S′ ∩ C. Thus S′′ = S′ ∩ U
is a colored hitting set for Fj containing at most one element from each color
class. S′′ can thus be extended to a colored hitting set S of Fj with |S| = k. ⊓⊔

Theorem 5. [⋆] Small Universe Hitting Set parameterized by solution size
k and universe size |U | = d does not have a polynomial kernel unless PH = Σ3

p .
The Dominating Set problem parameterized by the solution size k and the
size c of a minimum vertex cover of the input graph does not have a polynomial
kernel.

Theorem 5 has some interesting consequences. For instance, the second part
of Theorem 5 implies that the Dominating Set problem in graphs excluding
a fixed graph H as a minor parameterized by (k, |H|) does not have a kernel of
size poly(k, |H|) unless PH = Σ3

p .

Theorem 6. Unless PH = Σ3
p the problems Hitting Set parameterized by

solution size k and the maximum size d of any set in F , Dominating Set

in H-Minor Free Graphs parameterized by (k, |H|), and Dominating Set

parameterized by solution size k and degeneracy d of the input graph do not have
a polynomial kernel.
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6 Numeric Problem: Small Subset Sum

In the Subset Sum problem we are given a set S of n integers and a target t and
asked whether there is a subset S′ of S that adds up to exactly t. In the most
common parameterization of the problem one is also given an integer k, and S′

may contain not more than k numbers. This parameterization is W [1]-hard. We
consider a stronger parameterization where in addition to k a parameter d is
provided and the integers in S must have size at most 2d. This version, Small

Subset Sum, is trivially fixed parameter tractable by dynamic programming.

Theorem 7. [⋆] Small Subset Sum parameterized by (d, k) does not admit a
kernel polynomial in (d, k) unless PH = Σ3

p .
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