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Abstract. Capacitated versions of Vertex Cover and Dominating

Set have been studied intensively in terms of polynomial time approxi-
mation algorithms. Although the problems Dominating Set and Ver-

tex Cover have been subjected to considerable scrutiny in the param-
eterized complexity world, this is not true for their capacitated ver-
sions. Here we make an attempt to understand the behavior of the
problems Capacitated Dominating Set and Capacitated Vertex

Cover from the perspective of parameterized complexity.
The original, uncapacitated versions of these problems, Vertex Cover

and Dominating Set, are known to be fixed parameter tractable when
parameterized by a structure of the graph called the treewidth (tw). In
this paper we show that the capacitated versions of these problems be-
have differently. Our results are:
– Capacitated Dominating Set is W[1]-hard when parameterized by
treewidth. In fact, Capacitated Dominating Set is W[1]-hard when
parameterized by both treewidth and solution size k of the capacitated
dominating set.
– Capacitated Vertex Cover is W[1]-hard when parameterized by
treewidth.
– Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1)

where tw is the treewidth of the input graph and k is the solution size. As
a corollary, we show that the weighted version of Capacitated Vertex

Cover in general graphs can be solved in time 2O(k log k)nO(1). This im-

proves the earlier algorithm of Guo et al. [15] running in time O(1.2k
2

+
n2). Capacitated Vertex Cover is, therefore, to our knowledge the
first known “subset problem” which has turned out to be fixed param-
eter tractable when parameterized by solution size but W[1]-hard when
parameterized by treewidth.

1 Introduction

Dominating Set and Vertex Cover are problems representative for domi-
nation and covering, respectively. Given a graph G and an integer k, Vertex

Cover asks for a size-k set of vertices that cover all edges of the graph, while
Dominating Set asks for a size-k set of vertices such that every vertex in the
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graph either belongs to this set or has a neighbor which does. These fundamental
problems in algorithms and complexity have been studied extensively and find
applications in various domains [3–5, 8, 9, 12, 13, 15, 17, 21].

Vertex Cover and Dominating Set have a special place in parameter-
ized complexity [7, 10, 20]. Vertex Cover was one of the earliest problems
that was shown to be fixed parameter tractable (FPT) [7]. On the other hand,
Dominating Set turned out to be intractable in the realm of parameterized
complexity—specifically, it was shown to be W[2]-complete [7]. Vertex Cover

has been put to intense scrutiny, and many papers have been written on the
problem. After a long race, the currently best algorithm for Vertex Cover

runs in time O(1.2738k + kn) [4]. Vertex Cover has also been used as a
testbed for developing new techniques for showing that a problem is FPT [7, 10,
20]. Though Dominating Set is a fundamentally hard problem in the param-
eterized W-hierarchy, it has been used as a benchmark problem for developing
sub-exponential time parameterized algorithms [1, 6, 11] and also for obtaining a
linear kernels in planar graphs [2, 14, 10, 20], and more generally, in graphs that
exclude a fixed graph H as a minor.

Different applications of Vertex Cover and Dominating Set have initi-
ated studies of different generalizations and variations of these problems. These
include Connected Vertex Cover, Connected Dominating Set, Par-

tial Vertex Cover, Partial Set Cover , Capacitated Vertex Cover

and Capacitated Dominating Set, to name a few. All these problems have
been investigated extensively and are well understood in the context of poly-
nomial time approximation [5, 12, 13]. However, these problems hold a lot of
promise and remain hitherto unexplored in the light of parameterized complex-
ity; with exceptions that are few and far between [3, 15, 18, 21, 22].

Problems Considered: Here we consider two problems, Capacitated Vertex

Cover (CVC) and Capacitated Dominating Set (CDS). To define these
problems, we need to introduce the notions of capacitated graphs, vertex covers,
and dominating sets. A capacitated graph is a graph G = (V,E) together with
a capacity function c : V → N such that 1 ≤ c(v) ≤ d(v), where d(v) is the
degree of the vertex v. Now let G = (V,E) be a capacitated graph, C be a vertex
cover of G and D be a dominating set of G.

Definition 1. We call C ⊆ V a capacitated vertex cover if there exists a map-
ping f : E → C which maps every edge in E to one of its two endpoints such
that the total number of edges mapped by f to any vertex v ∈ C does not exceed
c(v).

Definition 2. We call D ⊆ V a capacitated dominating set if there exists a
mapping f : (V \ D) → D which maps every vertex in (V \ D) to one of its
neighbors such that the total number of vertices mapped by f to any vertex v ∈ D

does not exceed c(v).

Now we are ready to define Capacitated Vertex Cover and Capacitated

Dominating Set.
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Capacitated Vertex Cover (CVC): Given a capacitated graph G = (V,E)
and a positive integer k, determine whether there exists a capacitated vertex
cover C for G containing at most k vertices.

Capacitated Dominating Set (CDS): Given a capacitated graph G = (V,E)
and a positive integer k, determine whether there exists a capacitated dominating
set D for G containing at most k vertices.

Our Results: To describe our results we first need to define the treewidth (tw) of
a graph. Let V (U) be the set of vertices of a graph U . A tree decomposition of an
(undirected) graph G = (V,E) is a pair (X,U) where U is a tree whose vertices
we will call nodes and X = {Xi | i ∈ V (U)} is a collection of subsets of V such
that (1)

⋃
i∈V (U) Xi = V , (2) for each edge {v, w} ∈ E, there is an i ∈ V (U)

such that v, w ∈ Xi, and (3) for each v ∈ V the set of nodes {i | v ∈ Xi} forms
a subtree of U . The width of a tree decomposition ({Xi|i ∈ V (U)}, U) equals
maxi∈V (U){|Xi| − 1}. The treewidth of a graph G is the minimum width over all
tree decompositions of G.

There is a tendency to think that most combinatorial problems, especially
“subset problems”, are tractable for graphs of bounded treewidth (tw) when
parameterized by tw. In fact, the non-capacitated versions of the problems con-
sidered here, namely Vertex Cover and Dominating Set, are known to
be fixed parameter tractable when parameterized by the treewidth of the in-
put graph. The algorithms for Vertex Cover and Dominating Set run in
time O(2twn) [20] and time O(4twn) [1], respectively. In contrast, the capaci-
tated versions of these problems behave differently. More precisely, we show the
following:

– Capacitated Dominating Set is W[1]-hard when parameterized by the
treewidth. In fact, CDS is W[1]-hard when parameterized by both treewidth
and solution size k of the capacitated dominating set.

– Capacitated Vertex Cover is W[1]-hard when parameterized by treewidth.

– Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1) where tw
is the treewidth of the input graph and k is the solution size. As a corollary
of the last result we obtain an improved algorithm for the weighted version of
Capacitated Vertex Cover in general graphs. Here, every vertex of the input
graph has, in addition to the capacity, a weight, and the question is if there is
a capacitated vertex cover whose weight is at most k. Our algorithm running in
time O(2O(k log k)nO(1)) improves the earlier algorithm of Guo et al. [15] running

in time O(1.2k2

+ n2).

The so-called “subset problems” are known to go either way, that is, FPT or
W[i]-hard (i ≥ 1) when parameterized by solution size. However, when param-
eterized by treewidth they have invariably been FPT. Examples favoring this
claim include, but are not limited to, Independent Set, Dominating Set,
Partial Vertex Cover. Contrary to these observed patterns, our hardness
result for CVC when parameterized by treewidth makes it possibly the first
known “subset problem” which has turned out to be FPT when parameterized
by solution size, but W[1]-hard when parameterized by treewidth.
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2 Preliminaries

We assume that all our graphs are simple and undirected. Given a graph G =
(V,E), the number of its vertices is represented by n and the number of its edges
by m. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced by
V ′. With N(u) we denote all vertices that are adjacent to u, and with N [u], we
refer to N(u)∪ {u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]
and N(D) = N [D] \ D. Let f be the function associated with a capacitated
dominating set D. Given u ∈ D and v ∈ V \ D, we say that u dominates v if
f(v) = u; moreover, every vertex u ∈ D dominates itself. Note that the capacity
of a vertex v only limits the number of neighbors that v can dominate, that is,
a vertex v ∈ D can dominate c(v) of its neighbors plus v itself.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [7, 10, 20]. One dimension is the input
size n and the other one a parameter k. A problem is called fixed-parameter
tractable (FPT) if it can be solved in time f(k) ·nO(1), where f is a computable
function only depending on k. The basic complexity class for fixed-parameter
intractability is W[1]. To show that a problem is W[1]-hard, one needs to exhibit
a parameterized reduction from a known W[1]-hard problem: We say that a
parameterized problem A is (uniformly many:1) reducible to a parameterized
problem B if there is an algorithm Φ which transforms (x, k) into (x′, g(k)) in
time f(k) · |x|α, where f, g : N → N are arbitrary functions and α is a constant
independent of |x| and k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

3 Parameterized Intractability – Hardness Results

3.1 CDS is W[1]-hard parameterized by treewidth and solution size

In this section we show that Capacitated Dominating Set is W[1]-hard when
parameterized by treewidth and solution size. We reduce from the W[1]-hard
problem Multicolor Clique, a restriction of the Clique problem:
Multicolor Clique: Given an integer k and a connected undirected graph
G = (V [1] ∪ V [2] · · · ∪ C[k], E) such that for every i the vertices of V [i] induce
an independent set, is there a k-clique C in G?

In fact, we will reduce to a slightly modified version of Capacitated Dom-

inating Set called Marked Capacitated Dominating Set where we mark
some vertices and demand that all marked vertices must be in the dominating
set. We can then reduce from Marked Capacitated Dominating Set to Ca-

pacitated Dominating Set by attaching k + 1 leaves to each marked vertex
and increasing the capacity of each marked vertex by k + 1. It is easy to see
that the new instance has a size-k capacitated dominating set if and only if the
original one had a size-k capacitated dominating set that contained all marked
vertices, and that this operation does not increase the treewidth of the graph.
Thus, to prove that Capacitated Dominating Set is W[1]-hard when param-
eterized by treewidth and solution size, it is sufficient to prove that Marked

Capacitated Dominating Set is.
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Fig. 1. Adding an (A, B)-arrow from u to v.

We will now show how, given an instance (G, k) of Multicolor Clique, we
can build an instance (H, c, k′) of Marked Capacitated Dominating Set

such that

– k′ = 7k(k − 1) + 2k,
– G has a clique of size k if and only if H has a capacitated dominating set of

size k′, and
– the treewidth of H is O(k4).

For a pair of distinct integers i, j, let E[i, j] be the set of edges with one
endpoint in V [i] and the other in V [j]. Without loss of generality, we will assume
that |V [i]| = N and |E[i, j]| = M for all i, j, i 6= j. To each vertex v we
assign a unique identification number vup between N + 1 and 2N , and we set
vdown = 2N − vup. For two vertices u and v, by adding an (A,B)-arrow from u

to v we will mean adding A subdivided edges between u and v and attaching B

leaves to v (see Fig. 1). Now we describe how to build the graph H for a given
instance (G = (V [1] ∪ V [2] · · · ∪ V [k], E), k) of Multicolor Clique.

For every integer i between 1 and k we add a marked vertex x̂i that has a
neighbor v for every vertex v in V [i]. For every j 6= i, we add a marked vertex ŷij

and a marked vertex ẑij . Now, for every vertex v ∈ V [i] and every integer j 6= i

we add a (vup, vdown)-arrow from v to ŷij and a (vdown, vup)-arrow from v to ẑij .
Finally we add a set Si of k′ + 1 vertices and make every vertex in Si adjacent
to every vertex v with v ∈ V [i]. See left part of Fig. 2 for an illustration.

Similarly, for every pair of integers i, j with i < j, we add a marked vertex x̂ij

with a neighbor e for every edge e in E[i, j]. Moreover, we add four new marked
vertices p̂ij , p̂ji, q̂ij , and q̂ji. For every edge e = {u, v} in E[i, j] with u ∈ V [i] and
v ∈ V [j], we add a (udown, uup)-arrow from e to p̂ij , a (uup, udown)-arrow from e

to q̂ij , a (vdown, vup)-arrow from e to p̂ji and a (vup, vdown)-arrow from e to p̂ji.
We also add a set Sij of k′ + 1 vertices and make every vertex in Sij adjacent
to every vertex e with e ∈ E[i, j]. See right part of Fig. 2 for an illustration.

Finally, we add a marked vertex r̂ij and a marked vertex ŝij for every i 6= j.
For every i 6= j, we add (2N, 0)-arrows from ŷij to r̂ij , from p̂ij to r̂ij , from
ẑij to ŝij , and from q̂ij to ŝij (see Fig. 3). This concludes the description of the
graph H.

We now describe the capacities of the vertices. For every i 6= j, the vertex x̂i

has capacity N−1, the vertex x̂ij has capacity M−1, the vertices ŷij and ẑij both
have capacity 2N2, the vertices p̂ij and q̂ij have capacity 2NM , and both r̂ij

and ŝij have capacity 2N . For all other vertices, their capacity is equal to their
degree in H.
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Fig. 2. Left part: Gadget constructed for the vertices in the color class V [2]. Right
part: Gadget constructed for the edges between V [i] and V [j].

Observation 1 The treewidth of H is O(k4).

Proof. If we remove all marked vertices (
⋃k

i=1 Si and
⋃

i6=j Sij), a total of O(k4)
vertices, from H, we obtain a forest. As deleting a vertex reduces the treewidth
by at most one, this concludes the proof. ⊓⊔

Lemma 1. If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a
capacitated dominating set D of size k′ containing all marked vertices.

Proof. For every i < j let eij be the edge from vi to vj in G. In addition
to all the marked vertices, let D contain vi and eij for every i < j. Clearly D

contains exactly k′ vertices, so it remains to prove that D is indeed a capacitated
dominating set.

For every i < j, let x̂i and x̂ij dominate all their neighbors except for vi and
eij respectively. The vertices vi and eij can dominate all their neighbors, since
their capacity is equal to their degree. Let r̂ij dominate vdown

i of the vertices in
the (2N, 0)-arrow from ŷij , and v

up
i of the vertices of the (2N, 0)-arrow from p̂ij .

Similarly let ŝij dominate v
up
i of the vertices in the (2N, 0)-arrow from ẑij , and

vdown
i of the vertices of the (2N, 0)-arrow from q̂ij . Finally, for every i 6= j we let

ŷij , ẑij , p̂ij and q̂ij dominate all their neighbors that have not been dominated
yet. One can easily check that every vertex of H will either be a dominator or
dominated in this manner, and that no dominator dominates more vertices than
its capacity. ⊓⊔

Lemma 2. If H has a capacitated dominating set D of size k′ containing all
marked vertices, then G has a multicolor clique of size k.

Proof. Observe that for every integer 1 ≤ i ≤ k, there must be a vi ∈ V [i] such
that vi ∈ D. Otherwise we have that Si ⊂ D and, since |Si| > k′, we obtain a
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Fig. 3. Vertex-Edge incidence gadget

contradiction. Similarly, for every pair of integers i, j with i < j there must be
an edge eij ∈ E[i, j] such that eij ∈ D. We let eji = eij . Since |D| ≤ k′ it follows
that these are the only unmarked vertices in D. Since all the unmarked vertices
in D have capacity equal to their degree, we can assume that each such vertex
dominates all its neighbors. We now proceed with proving that for every pair
of integers i,j with i 6= j, the edge eij = uv is incident to vi. We prove this by
showing that if u ∈ V [i] then v

up
i + udown = 2N .

Suppose for a contradiction that v
up
i +udown < 2N . Observe that each vertex

of T = (N(ŷij)∪N(r̂ij)∪N(p̂ij))\(N(vi)∪N(eij)) must be dominated by either
ŷij , r̂ij , or p̂ij . However, by our assumption that v

up
i + udown < 2N , it follows

that |T | = 2N2 + 4N + 2MN − (vup
i + udown) > 2N2 + 2N + 2MN . The sum

of the capacities of ŷij , r̂ij , and p̂ij is exactly 2N2 + 2N + 2MN . Thus it is
impossible that every vertex of T is dominated by one of ŷij , r̂ij , and p̂ij , a
contradiction. If v

up
i + udown > 2N then vdown

i + uup < 2N , and we can apply
an identical argument for ẑij , ŝij , and q̂ij .

Thus, it follows that for every i 6= j there is an edge eij incident both to vi

and to vj . Thus {v1, v2, . . . , vk} forms a clique in G. As any k-clique in G is a
multicolor clique this completes the proof. ⊓⊔

Theorem 1. CDS parameterized by treewidth and solution size is W[1]-hard.

3.2 CVC parameterized by treewidth is W[1]-hard

Usually vertex cover problems can be seen as restrictions of domination prob-
lems, and therefore it is natural to expect Capacitated Vertex Cover to be
somewhat easier than Capacitated Dominating Set. In this section, we give
a result similar to the hardness result for Capacitated Dominating Set, but
weaker in the sense that we only show that Capacitated Vertex Cover is
hard when parameterized by the treewidth, while we have seen in the previous
section that Capacitated Dominating Set is hard when parameterized by
the treewidth and the solution size.

To obtain our result we reduce from Multicolor Clique, as in the previous
section. Again, we reduce to a marked version of Capacitated Vertex Cover,
where we search for a size k′ capacitated vertex cover that contains all the
marked vertices. The reduction from Marked Capacitated Vertex Cover

to Capacitated Vertex Cover is almost identical to the reduction from
Marked Capacitated Dominating Set to Capacitated Dominating Set
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described in the previous section. Notice also that in Marked Capacitated

Vertex Cover it makes sense to have marked vertices with capacity zero, as
they will get non-zero capacity after the reduction to Capacitated Vertex

Cover.
We reduce by building for an instance (G, k) of Multicolor Clique an

instance (H, c, k′) of Marked Capacitated Vertex Cover in almost the
same manner as in the reduction to Marked Capacitated Dominating Set.
The only differences are:
– We do not add the vertex sets Si and Sij for every i, j.
– When we add an (A,B)-arrow from u to v, the A vertices on the subdivided
edges are marked and have capacity 1, while the B leaves attached to v are also
marked but have capacity 0.
– We set k′ to k′ = 7k(k − 1) + 2k + (2k2N + (2M + 4) · k · (k − 1)) · 2N .

The new term in the value of k′ is simply a correction for all the extra
marked vertices in the (A,B)-arrows. Notice that in this case the value of k′ is
not a function of k alone, and that therefore this reduction does not imply that
Capacitated Vertex Cover is W[1]-hard parameterized by treewidth and
solution size. However, by applying arguments almost identical to the ones in
the previous section, we can prove the following claims; the details are omitted.
– The treewidth of H is O(k3).
– If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a capacitated
vertex cover S of size k′ containing all marked vertices.
– If H has a capacitated vertex cover S of size k′ containing all marked vertices,
then G has a multicolor clique of size k.

Together, the claims imply the following theorem.

Theorem 2. CVC parameterized by treewidth is W[1]-hard.

4 FPT Algorithm for CVC on Graphs of Bounded

Treewidth

In the last sections we have shown that Capacitated Vertex Cover, when
parameterized only by the treewidth tw of the input graph, is W[1]-hard, while
Capacitated Dominating Set remains W[1]-hard even when parameterized
by both tw and the solution size k. We complement these hardness results by
giving a time 2O(tw log k)nO(1) algorithm for graphs of bounded treewidth, a re-
sult which was sketched independently by Hannes Moser [19]. Furthermore, us-
ing this algorithm, we give an improved algorithm for the weighted version of
Capacitated Vertex Cover in general graphs: Our algorithm, running in
time O(2O(k log k)nO(1)), improves the earlier algorithm of Guo et al. [15], which

runs in time O(1.2k2

+ n2).
To solve CVC on graphs of bounded treewidth, we give a dynamic pro-

gramming algorithm working on a so-called nice tree decomposition of the input
graph G: A tree decomposition (X,U) is a nice tree decomposition if one can
root U in such a way that the root and every inner node of U is either an insert
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node, a forget node, or a join node. Thereby, a node i of U is an insert node if i

has exactly one child j, and Xi consists of all vertices of Xj plus one additional
vertex; it is a forget node if i has exactly one child j, and Xi consists of all
but one vertices of Xj ; and it is a join node if i has exactly two children j1, j2,
and Xi = Xj1 = Xj2 . Given a tree decomposition of width tw, a nice tree de-
composition of the same width can be found in linear time [16]. In what follows,
we assume that the nice tree decomposition (X,U) that we are using has the
additional property that the bag associated with the root of U is empty (such
a decomposition can easily be constructed by taking an arbitrary nice tree de-
composition and adding some forget nodes “above” the original root). Similarly,
we assume that every bag associated with a leaf node different from the root
of U contains exactly one vertex. For a node i in the tree U of a tree decompo-
sition (X,U), let

Yi :=
⋃{v ∈ Xj | j is a node in the subtree of U whose root is i},

Zi := Yi \ Xi, and Ei := {{v, w} ∈ E | v ∈ Zi ∨ w ∈ Zi}.
Starting at the leaf nodes of U that are different from the root, our dynamic

programming algorithm assigns to every node i of U a table Ai that has
– a column ℓ with ℓ ≤ k,
– for every vertex v ∈ Xi a column vc(v) with vc(v) ∈ {true, false}, and
– for every vertex v ∈ Xi a column s(v) with s(v) ∈ {null, 0, 1, . . . , k − 1}.

Every row of such a table Ai corresponds to a solution (f, C) for CVC on the
subgraph of G that consists of all vertices in Yi and all edges in E having at least
one endpoint in Zi. More exactly, for every row of a table Ai there is a vertex
set C ⊆ Yi and mapping f : Ei → C with the following properties:
– C is a capacitated vertex cover for Gi = (Yi, Ei).
– |C| ≤ ℓ.
– C contains all vertices v ∈ Xi with vc(v) = true and no vertex v ∈ Xi

with vc(v) = false.
– For every vertex v ∈ Xi ∩C, we have |{{v, w} ∈ Ei | f({v, w} = w}| = s(v),

and for every vertex v ∈ Xi \ C, we have s(v) = null.
Intuitively speaking, for a vertex v ∈ C, the value s(v) contains the number
of edges incident to v that are covered by vertices in Zi and, therefore, do not
have to be covered by v. The simple observation that s(v) can be at most k − 1
(because C can contain at most k − 1 neighbors of v) is crucial for the running
time of the algorithm.

Clearly, if the table associated with the root of U is nonempty, the given
instance of CVC is a yes-instance.

We will now describe the computation of the table Ai for a node i in U ,
depending on if i is a leaf node different from the root, an insert node, a forget
node, or a join node. If necessary, we write ℓi, vci(v), and si(v) in order to make
clear that a value ℓ, vc(v), and s(v), respectively, stems from a row of a table Ai.

The node i is a leaf node different from the root. Let Xi = {v}. Then
we add one row to the table Ai for the case that v is not part of C and one row
for the case that v is part of C, provided that k > 0. Because i has no child and,
hence, no neighbor of v belongs to Zi, the value s(v) is set to 0 in the case that v

is part of C:
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1 if k > 0: {add a new row to Ai and set vc(v) := true; s(v) := 0; ℓ := 1 in this row; }
2 add a new row to Ai and set vc(v) := false; s(v) := null; ℓ := 0 in this row;

The node i is an insert node. Let j be the child of i in U , and let Xi =
Xj ∪ {v}. Here we extend the table Aj by adding the values vc(v) and s(v). For
every row of Aj , we add one row to the table Ai for the case that v is not part
of C and one row for the case that v is part of C, provided that ℓj < k. Because
no neighbor of v can belong to Zi, the value s(v) is set to 0 in the case that v is
part of C:

1 for every row r of Aj : {
2 if ℓj < k: {
3 copy the row r from Aj into Ai and set vc(v) := true; s(v) := 0; ℓ := ℓ + 1 in this row; }
4 copy the row r from Aj into Ai and set vc(v) := false; s(v) := null in this row; }

The node i is a forget node. Let j be the child of i in U , and let Xi =
Xj \ {v}. Clearly, all neighbors of v belong to Yj due to the definition of a tree
decomposition. What has to be done is to consider the edges {v, w} with w ∈ Xi,
to decide which of them shall be covered by v, and to set the value of sj(v)
accordingly. Note that this approach ensures that for all edges {v, w} with w ∈ Zj

we have already decided in a previous step which of these edges are covered by v.
More exactly, for every row of Aj , we perform the following steps. If vcj(v) =
true, then we try all possibilities for which edges between v and vertices w ∈ Xi

can be covered by v and add rows to Ai accordingly. If vcj(v) = false, then, of
course, no edge between v and vertices w ∈ Xj can be covered by v, and we
add one row to Ai. In both cases, we have to check that for every edge {v, w}
with w ∈ Xi that is not covered by v it holds that vcj(w) = true and the
remaining capacity of w, which can be computed from s(w) and the number
of w’s neighbors in Zj , is big enough to cover {v, w}:
1 N ′ := N(v) ∩ Xi;

2 for every row r of Aj : {
3 if vcj(v) = true: {
4 for every subset N ′′ of N ′ with |N ′′| = min{|N ′|, cap(v) − (|N(v) ∩ Zj | − sj(v))}: {
5 if ∀w ∈ N ′ \ N ′′ : vcj(w) = true∧ cap(w) > |N(w) ∩ Zj | − sj(w): {
6 copy the row r from Aj into Ai;

7 for every vertex w ∈ N ′′ with vc(w) = true: {
8 update the new row in Ai and set s(w) := s(w) + 1; }}}
9 else: { if ∀w ∈ N ′ : vc(w) = true∧ cap(w) > |N(w) ∩ Zj | − sj(w): {

10 copy the row r from Aj into Ai; }}}

The node i is a join node. Let j1 and j2 be the children of i in U . Here
we consider every pair r1, r2 of rows where r1 is from Aj1 and r2 is from Aj2 . We
say that two rows r1 and r2 are compatible if for every vertex v in Xi it holds
that vcj1(v) = vcj2(v). If two rows are compatible, then we check whether for
every vertex v ∈ Xi with vcj1(v) = vcj2(v) = true the number of edges {v, w}
covered by v with w ∈ Zj1 plus the number of edges {v, w} covered by v with w ∈
Zj2 is at most cap(v). If this is the case, a new row is added to Ai:

1 for every compatible pair r1, r2 of rows where r1 is from Aj1
and r2 is from Aj2

: {
2 if ∀v ∈ Xi : vcj1

(v) = false∨ cap(v) ≥ |N(v) ∩ Zj1
| − sj1

(w) + |N(v) ∩ Zj2
| − sj2

(w): {
3 add a new row to Ai;

4 update the new row in Ai and set ℓ := ℓj1
+ ℓj2

− |{v ∈ Xi | vcj1
(v) = true}|;

5 for every vertex v ∈ Xi: {
6 update the new row in Ai and set vc(v) = vcj1

(v); s(v) = sj1
(v) + sj2

(v); }}}
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In all four cases (i is a leaf node different from the root, an insert node, a
forget node, or a join node), after inserting a row to Ai, we delete dominated
rows from Ai. A row r1 is dominated by a row r2 if r1 and r2 are compatible,
the value of ℓ in r1 is equal or greater than the value of ℓ in r2, and for every
vertex v ∈ Xi with vc(v) = true the value of s(v) in r1 is equal or less than
the value of s(v) in r2. The correctness of this data reduction is obvious: If the
solution corresponding to r1 can be extended to a solution for the whole graph,
then this is also possible with the solution corresponding to r2 instead. Clearly,
due to this data reduction, the table can never contain more than ktw rows,
which leads to the following theorem.

Theorem 3. CVC on graphs of treewidth tw can be solved in k3·tw ·nO(1) time.

Proof. The correctness of the algorithm follows from the above description. The
running time for computing one table Ai associated with a tree node i is bounded
from above by k3·tw ·nO(1), due to the fact that every table contains at most ktw

rows and that the tree decomposition has O(n) tree nodes [16]. ⊓⊔

We mention in passing that with usual backtracking techniques it is possible
to construct the mapping f and the set C after running the dynamic program-
ming algorithm.

CVC in General Undirected Graphs: The algorithm described above can
also be used for solving CVC on general graphs with the following two obser-
vations. Firstly, the treewidth of graphs that have a vertex cover of size k is
bounded above by k, and a corresponding tree decomposition of width k can be
found in O(1.2738k + kn) time [4]. (For a graph G = (V,E) that has a vertex
cover C with |C| = k, a tree decomposition of width k can be constructed as
follows: Let U be a path of length |V \ C|, and assign to every node i of U a
bag Xi that contains C and one vertex from V \ C. The vertex cover of size k

can be found in time O(1.2738k + kn) [4].) Secondly, Theorem 3 can easily be
adapted to the weighted version of CVC, where every vertex of the input graph
has, in addition to the capacity, a weight, and the question is if there is a capac-
itated vertex cover whose weight is at most k. With these observations, we get
the following corollary.

Corollary 1. The weighted version of CVC on general graphs can be solved in
k3k · nO(1) = 2O(k log k) · nO(1) time.

5 Conclusion

We conclude with an open question. It is easy to observe that if a planar graph
has a CDS of size at most k then the treewidth of the input graph is at most
O(

√
k) [1, 6, 11]. Hence, in order to show that CDS is FPT for planar graphs, it

is sufficient to obtain a dynamic programming algorithm for it on planar graphs
of bounded treewidth. The following question in this direction remains unan-
swered: Is CDS in planar graphs parameterized by solution size fixed parameter
tractable?
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