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1 Introduction

In a distributed network, the delivery of messages between its nodes is a basic
task, and a mechanism is required that is able to deliver packages of data from
any node of the network to any other node. To this end, usually a distributed
algorithm runs on every node of the network, which properly forwards incoming
packages, employing some information that is stored in the local memory of the
node.

In sensor and ad-hoc networks, the resources of the nodes are typically
strongly limited—in particular, small memory sizes are common. However, the
number of nodes in these networks can be very high, such that it is normally
too expensive to use {2(n) bits of local memory in each node: Storing at each
node a routing table that contains for every destination node one entry of routing
information is not possible. Therefore, distributed algorithms and data represen-
tations are required that allow to use only o(n) bits of local memory, typically
at the cost of increasing the lengths of the routing paths. Compact routing is the
field of research that deals with the theoretical basics of this problem. It ana-
lyzes how “good” routing algorithms can be when the available resources, such as
memory and computational power, are limited, and provides the fundamentals
for memory-efficient routing protocols.

The model that is used assumes that a distributed algorithm, the so called
routing scheme, runs at each node of the network and decides for any incoming
data package to which immediate neighbor of the node the package shall be
forwarded in order to make it reach its destination.

The network is usually considered as an undirected and edge-weighted graph
with labeled nodes in which every edge has a number—the port number—at each
of its endpoints. Each data package has a header which contains information
about the destination of the package—for example the label of the destination
node—and possibly additional information that is used during the routing. A
node that receives a data package has to check whether the node itself is the
destination of the package. If this is not the case, it has to send it immediately to
another node in such a way that the package eventually reaches its destination.

The decision process which determines in which direction a data package has
to be forwarded can be regarded as a routing function, which takes as input
the current node, the port number of the edge through which the data package
has reached the node, and the header of the data package, and which computes
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two outputs: the port number of the edge through which the package has to be
sent and, if the model of the network allows to change headers of data pack-
ages during the routing, a new header for the package. A routing scheme is the
implementation of a routing function.

Most routing schemes need some information, which is stored in local routing
tables, and these tables have to be initialized before any data packages can be
routed. Hence, in order to run a distributed network, a routing strategy is needed,
which takes care of all tasks associated with routing and which consists of

— a global preprocessing algorithm, which initializes the local data structures
of all nodes and which—if this is allowed by the model of the network—
assigns labels to the nodes and port numbers to the edges (otherwise, the
node labels and port numbers, respectively, are part of the input graph and
cannot be changed), and

— a distributed algorithm, called the routing scheme, which implements an
adequate routing function.

Consider now the following straightforward routing strategy: In the prepro-
cessing phase, the shortest paths between all pairs of nodes are computed, and
at each node v of the network a routing table is stored which contains for each
node w of the network the port number of the edge leading from v to the next
node on the shortest path from v to w. If a data package whose header contains
the label of a node w as destination address arrives at a node v, the routing
algorithm at v searches in the local routing table of v for the entry belonging
to w and sends the package through the edge determined by the port number
found in the table. This routing strategy needs no rewritable package headers
and it routes every data package on the shortest path to its destination.

However, each such routing table needs nlog(deg(v)) bits of local memory
space in every node v, where n is the number of nodes in the network and deg(v)
is the number of edges incident to v. In a large network, such a demand for
memory can be too expensive, and more intricate routing strategies are needed. A
routing strategy (and also its routing scheme) is called compact if, for a network
consisting of n nodes, it needs only o(n) bits of local information at each node
(i.e., it needs less than c¢-n bits of local memory at each node for every constant ¢
if n is big enough).

In order to save memory space, one often accepts that packages are routed
towards their destination not on the shortest possible path. Therefore, besides
the memory consumption, one of the most important performance measurements
of a routing strategy is its stretch, which is defined as the maximum ratio, taken
over all node pairs (v,w), between the length of the path a data package be-
tween v and w is routed and the length of the shortest path between v and w
in the network. The trade-off between the memory space that is needed and the
maximum stretch guaranteed by a routing strategy is a very extensively studied
topic in the area of routing in networks.

Of course, there are also other properties of routing strategies that have to be
optimized and that are considered in literature. The most common performance
measurements for routing strategies are
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— the memory space needed in each node (called local memory),

— the total memory space used by all nodes (called total memory),

— the stretch,

— the sizes of the addresses and package headers,

— the time needed to compute the routing function (called routing time or
latency), and

— the time needed for the preprocessing.

Note that the memory consumption of a routing strategy cannot be consid-
ered without also considering the sizes of the addresses and package headers,
because if routing strategies are allowed to assign arbitrary addresses to the
nodes, the addresses can be used for storing routing information.

In this chapter, we will first give an overview over some important results
and then describe three exemplary routing strategies.

2 Definitions

A network is modeled as an undirected, connected graph G = (V, E) with n :=
[V], m := |E| and a weight function r : E — R representing distances between
the nodes that are connected by edges. (Sometimes networks are also modeled
as unweighted graphs, i.e., Ve € E : r(e) = 1.) The nodes of the graph are
labeled with numbers or, more generally, with arbitrary data types that serve
as addresses. We denote such an address of a node v with a(v). Moreover, there
exists a numbering p : {(v,w) | {v,w} € E} — IN representing the port numbers:
The edge {v,w} is labeled with p(v,w) at its endpoint v and with p(w,v) at its
endpoint w. The node addresses and port numbers are either fixed (and, there-
fore, part of the input for the preprocessing algorithm of the routing strategy)
or can be assigned arbitrarily by the routing strategy, which can possibly lead
to more efficient routing schemes. In order to prevent port numbers from being
abused for storing hidden routing information, the port numbers of the edges
incident to a node v must lie between 1 and deg(v), where deg(v) stands for the
number of neighbors of v, i.e., V{v,w} € E: 1 < p(v,w) < deg(v).

To every data package a header is attached containing some information (e.g.,
the address of the destination node), which is used by the routing scheme. Some
routing schemes need rewritable headers, that is, the headers can be modified
by the nodes that route the data packages.

A shortest path between two nodes v and w is a path where the sum of the
edge weights is minimum; this sum is denoted as the distance d(v, w) between v
and w. The stretch of a routing scheme is defined as

ZeeP(v,w) 7"(6)
max ——————
v,weV d(v,w)

where P(v,w) is the edge set traversed by a package that is routed by the routing
scheme from v to w.
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While some routing strategies can only provide routing schemes for special
classes of graphs, a universal routing strategy works on every arbitrary graph.

A direct routing function depends only on the address of the destination node
(and, of course, on the current node)—this makes direct routing schemes (i.e.,
routing schemes implementing direct routing functions) quite simple. A direct
routing scheme does not change the package header (which only contains the
address of the destination node), which implies that it has to route any package
on a loop-free path (i.e., a path that passes each of its nodes exactly once). A
routing scheme with stretch 1 is called a shortest path routing scheme.

Depending on whether a routing strategy is allowed to assign addresses to the
nodes and port numbers to the edges, the following concepts are distinguished:
In the case of labeled routing, the node addresses can be chosen arbitrarily by
the routing strategy, such that routing information can be stored in the node
addresses, whereas name-independent routing handles with node addresses that
are fixed—mostly numbers between 1 and n. In the fized port model, the port
numbers are fixed before the labels of the nodes are given. In the designer port
model port numbers from 1 to deg(v) can be assigned by the routing strategy
arbitrarily to the edges incident to every node v.

A node coloring for a graph is a mapping ¢: V — {1,...,b} where b stands
for the number of the colors that are used.

With log we denote the logarithm to the base 2; the notation O(), similar
to O(), omits constant and poly-logarithmic factors. We generally omit rounding
notations [...] and |[...], e.g., we write logn instead of [logn] or |logn].

3 Overview

In this section we will give an overview over a selection of results concerning
routing with low memory consumption; this overview will contain fundamental
past works as well as up to date results. While in Sect. 3.1 we will consider
universal routing strategies, in Sect. 3.2 we will turn our attention to routing
strategies that work only on special graph classes, for example on trees. Some
of the presented results are summarized in Tables 1 and 2.

3.1 Universal Routing Strategies

Universal routing strategies are able to route in any network, without any re-
striction on the topology. For routing on shortest paths it is optimal with respect
to memory consumption to simply store a routing table in each node with one
entry for each destination node [26]. However, by routing on almost-shortest
paths the memory consumption can be reduced; this issue was first raised by
Kleinrock and Kamoun [27]. For overviews see [21, 22,24, 31, 40].

Labeled Routing. Labeled routing strategies are allowed to arbitrarily assign
addresses to the nodes. Using thereby addresses that contain routing information
often results in a smaller memory consumption compared to name-independent
routing, where the node names are given and cannot be changed.
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Universal routing strategies

Labeled routing

Port model |Stretch|Addr. size Local memory Remarks
designer port 5 logn| O(v/n(logn)®*?)  [17]

fixed port 3 3log n|O(n*?(logn)*/?) [16]

designer port 3|(1+o0(1))logn O(v/nlogn) [36,35]

designer port| 4k —5| o(k(logn)?) O(n/*) [36,35]|str. 2k — 1 w. handsh.
Name-independent routing

Port model|Stretch|Local memory Remarks
fixed-port 5 O(v/n) [9]

fixed-port 3 O(v/n(logn)?/loglog n) [6]

Labeled routing in trees

Port model |Stretch|Addr. size+local memory Remarks
designer-port 1 (I+o0(1))logn  [35]

fixed-port 1 O((logn)?/loglogn) [18, 35]

Table 1. Performance data of several routing strategies.

Interval Routing. An often used way to save memory space is to assign the
node labels in such a way that, at each node, packages for several consecutive
destination addresses can be routed through the same edge—this technique is
called interval routing. In such interval routing schemes typically each edge of
a node serves as output port for a set of consecutive destination addresses, i.e.,
for an interval of addresses. A typical routing table then consists of a mapping
from address intervals to port numbers. This idea was introduced by Santoro
and Khatib [33]; the term interval routing was introduced by van Leeuwen and
Tan [38] who showed that for every network there is a (not necessarily shortest
path) interval routing scheme that uses every edge of the network. Characteriza-
tions of networks that have shortest path interval routing schemes can be found
in [20,21,33,39]. There are also interval routing schemes using more than one
address interval per port [39]; the compactness of a network is then defined as
the maximum number of intervals, taken over all nodes, that have to be mapped
to the same output port [21]. For an overview about interval routing schemes
see [21, 24].

Upper Bounds for Labeled Routing. A labeled routing strategy for the fixed
port model using addresses of size O((logn)?) and headers of size O(logn) was
presented by Peleg and Upfal [32]; their strategy needs a total memory space
of O(k*>n'+1/*logn) and guarantees a stretch of s = 12k + 3 for k > 1. However,
it neither gives a guarantee for the local memory consumption nor is it able to
handle weighted edges. The strategy is based on a technique called hierarchical
routing—the idea here is to cover the network with several levels, that is, with
subgraphs of increasing radii. A package is first sent on the lowest level; if it does
not reach its destination because it is out of the radius the package will bounce
back to the sender, which tries to send it on a higher level.
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A much more simple scheme of Cowen [16] uses some selected nodes as “land-
marks” which results in a direct routing scheme with a stretch of three in the
fixed port model; it has addresses and headers of size 3logn bit and needs a
local memory of size O(n?/3(logn)*/?).

By using the technique of interval routing, the memory demand can be fur-
ther reduced to O(y/n(logn)3/?) while attaining a maximum stretch of five and
an average stretch of three [17]; this scheme for the designer port model uses
numbers from 1 to n as addresses and takes O(logn) routing time.

An improved stretch-three strategy in the designer port model was given by
Thorup and Zwick [35, 36]; their scheme uses size-(1 + o(1)) logn addresses and
headers and needs O(y/nlog n) bits of local memory; the routing time is constant.
A variation of the algorithm has (logn)-bit headers and takes O(loglogn) time.
Thorup and Zwick also generalize their result: Stretch 4k — 5 is possible with
o(k(log n)?)-bit addresses, o((log n)?)-bit headers and O(n'/*) bits of local mem-
ory. If handshaking—that is, communication between nodes in order to get rout-
ing information—is allowed, the stretch can be reduced to 2k — 1.

Lower Bounds for Labeled Routing. Gavoille and Pérennés [26] showed that every
shortest path routing scheme needs 2(nlog(deg(v))) bits of local memory per
node v if addresses of size O(logn) are used, independent of the header size of
the packages and even in the designer port model. This implies that there is
no better universal strategy for routing on shortest paths than simply storing a
routing table in each node with one entry for every destination node.

For routing on non-shortest paths, Peleg and Upfal [32] showed that every
universal strategy of a stretch factor @(s) requires a total memory space of
Q(n'T1/20)) bits (a more detailed look at the hidden constants shows a lower
bound of £2(n'*1/(25+4)) bits total memory for a stretch of s > 1 [22]).

Eilam et al. [17] proved that even in the designer port model there is no loop-
free universal strategy (in particular, no strategy with a direct routing scheme)
with addresses chosen from {1,...,n} that uses a local memory space smaller
than c4/n bits on every network for a constant ¢ = ﬂm/ In 2. This holds for
almost every family of graphs, even for trees, and, therefore, for every stretch
(note that every non-shortest path between two nodes in a tree has to go through
at least one node twice). This explains why many of the strategies mentioned in
this chapter (for example [6,12]) have to rewrite the headers of the packages at
least once during the routing.

Another lower bound for universal routing strategies using integers from 1
to n as addresses involves a total memory space of £2(n?) bits (i.e., 2(n) bits
local memory in at least one node) for a stretch smaller than three [23] even in
the designer port model; this result implies that there is no compact universal
routing strategy with a stretch smaller than three.

Name-Independent Routing. In the case of name-independent routing the
node addresses are part of the input network and cannot be changed in the
preprocessing phase of the routing strategy.
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Universal routing strategies

Labeled routing with node addresses from {1,...,n}
Port model |Stretch |Local memory Remarks
designer port <3 2(n) [23]

designer port 1 2(nlogn) [26]

designer port| every| > m\/2/3/In2-/n [17]|bound for loop-free strategies
Name-independent routing

Port model|Stretch [Local memory Remarks
designer port <5 2(y/n) [35]
fixed port <2k+1 2((nlog ’I’L)l/k) [4] for any integer k > 1

Labeled routing in trees

Port model |Stretch |Addr. size+local memory|Remarks
fixed port 1/2((logn)?/loglogn) [19]
Table 2. Some lower bounds for the demand of local memory.

Upper Bounds for Name-Independent Routing. The first to distinguish between
labeled and name-independent routing were Awerbuch et al. [10] who presented
a name-independent routing strategy that uses the technique of hierarchical
routing and needs O(kn?/*logn) bits of local memory per node and attains a
stretch factor of O(k23%) for any integer k > 1. A series of improvements [2,
11,12] resulted in a stretch-five routing strategy using O(y/n) bits of memory
per node by Arias et al. [9] and a stretch-three routing strategy using rewritable
headers of size O((logn)?/loglogn) and O(y/n(logn)3/loglogn) bits of memory
per node by Abraham et al. [6]. We will describe the algorithm of Abraham et
al. in Section 4.

Lower Bounds for Name-Independent Routing. Obviously, all lower bounds given
for the case of labeled routing also hold for the case of name-independent routing,
but there are also stronger bounds.

One of them can be seen by considering the complete bipartite graph K, /3 5, /2:
Every universal name-independent routing strategy in the fixed port model with
a stretch smaller than three has to use a local memory of {2(nlogn) bits [6].
This result was generalized by Abraham et al. [4], who proved a lower bound
of 2((nlogn)'/*) bits of local memory for any stretch stretch smaller than 2k + 1
for any integer k > 1. Moreover, it is known [35] that there is no universal name-
independent routing strategy with stretch smaller than five using o(y/n) bits of
local memory.

By considering the center node of a star, one can see that there is no universal
loop-free name-independent routing strategy that uses o(n) bits of memory in
every node [6].
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3.2 Special Graph Classes

There is a large portion of work on special families of graphs, especially for
trees. Routing strategies for trees are also used as subroutines in some universal
routing strategies (see Sect 4.3).

Trees. The first interval routing scheme for trees using O(deg(v) logn) bits of
memory in each node v was presented by Santoro and Khatib [33]. Gavoille [21]
showed that labeled routing with 3.71./n bits local memory per node is possible
in the designer port model, although with exponential routing time. If addresses
of size 5logn + o(logn) are allowed, there is a direct routing scheme in the
designer port model that needs 3logn + O(loglogn) bits per node and has
constant routing time and a preprocessing time of O(nlogn) [18]. It is even
possible to reduce the address size to 2.8logn bit while increasing the routing
time to n°(M) and the time for preprocessing to ™) [18]. A similar result was
achieved by Thorup and Zwick [35] whose routing scheme uses addresses and
local memory of size (1 + o(1))logn bit and has a constant routing time.

For the fixed port model, Peleg [30] presented a direct labeled routing scheme
for trees that needs addresses and local memory of size O((logn)?) and whose
routing time is O(logn). This scheme is based on a technique called distance
labeling: This labeling of the nodes allows, given the addresses of two nodes,
to compute their distance (see also [14,15,25]). Fraigniaud and Gavoille [18]
as well as Thorup and Zwick [35] improved this result by giving direct routing
schemes with addresses, headers and local memory of size O((logn)?/loglogn);
their routing time is constant and the preprocessing time is O(nlogn). Comple-
menting this result, Fraigniaud and Gavoille [19] showed that for every shortest
path routing scheme for trees in the fixed port model the sum of the address size
and the local memory size is £2((logn)?/loglogn) for some node in some tree.
Moreover, it is known [18] that any shortest path routing scheme with addresses
from {1,...,n + o(y/n/logn)} requires a local memory of size n — o(n) bit in
the fixed port model and a local memory of size ¢\/n — o(n) bit for some con-
stant ¢ in the designer port model, which points out how even a small a change
of the header size has a big impact on the size of the local memory (note that by
attaching the routing information of a node into its address, it is even possible
to create routing strategies that need no local memory but that require bigger
addresses).

Further Graph Classes. Other graph classes are considered as well; a large
list of literature is given, e.g., by Abraham et al. [3]. For planar graphs, the
best known (labeled) shortest path routing scheme is from Lu [29], who uses
addresses from 1 to n and 7.181n + o(n) bits of local memory in the designer
port model. No lower bound for the memory size of shortest path routing schemes
on planar graphs is known. For a stretch greater than one, Thorup [34] presented
a stretch-(1 + €) labeled routing scheme that uses addresses and routing tables
of size O((1/€)(logn)?). Abraham et al. [3] gave a name-independent routing
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strategy for unweighted graphs excluding any fixed minor (which is, therefore,
applicable on planar graphs) in the fixed port model. They use headers of size
O((logn)?/loglogn) and need a local memory of size O(1).

Other results regard, e.g., routing on euclidean metrices [7], routing in growth
bounded networks [8], routing in graphs with low doubling dimension [1, 28],
routing in power law graphs [13], or routing in interval graphs and circular arc
graphs [15].

4 Algorithms

In this section we describe three routing strategies. First, in Sect. 4.1, we present
a straightforward labeled routing strategy for trees as an easy to understand
example for interval routing. This strategy needs O(deg(v)logn) bits of memory
in each node v. The memory requirement is improved to 6logn bits of local
memory in Sect. 4.2, where the idea of interval routing is combined with that of
moving part of the routing information from the local memories into the node
addresses. Finally, we sketch a state of the art name-independent routing strategy
for arbitrary graphs in Sect. 4.3 which needs O(y/n(logn)®/loglogn) bits of
local memory per node and guarantees a stretch of three. Although this routing
strategy is name-independent, it uses as a subroutine a compact labeled routing
strategy for trees, for example the one of Sect. 4.2.

4.1 An Interval Routing Scheme for Trees

The direct labeled routing strategy of Santoro and Khatib [33] for trees in the
fixed port model uses the technique of interval routing and needs O(deg(v) logn)
bits of local memory in each node v. The strategy is based on a depth first search
(DFS) numbering of the nodes, and because of its simplicity we will use it as an
example for interval routing on trees.

In the preprocessing phase of the strategy, the tree is rooted at an arbitrary
node, and the nodes are labeled via a depth first search (DFS). Thus, for each
node v with address a(v), the addresses of the nodes in the subtree rooted at v
form a complete interval, that is, if ¢ is the number of the nodes in this subtree,
then the addresses of the nodes in the subtree are exactly the numbers from a(v)
to a(v)+t—1. Now the following information is stored at each node v (see Fig. 1
for an example):

— its address a(v),

— the highest address occurring in the subtree rooted at v, denoted with f,,
— the port number of the edge leading to the parent of v, and

a table with one entry (a;,p;) for each child v; of v, where a; is the high-
est node address occurring in the subtree rooted at v; and p; is the port
number p(v,v;) of the edge leading from v to v;.

The header of a data package contains nothing but the address of its destina-
tion node. A node v that has to route a package with destination address a(w)
performs the following steps:
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Local memory of node 2
Own address

f2 (= highest addr. in subtree)
Port to parent

Port to subtree (4, 2
Port to subtree (7,3

| N

~——| —

Fig. 1. Example for the interval routing strategy for trees of Sect 4.1. The picture on
the left shows a tree whose edges are labeled with port numbers. The routing strategy
performs a DFS to determine the node addresses. The table on the right shows the
local memory of node 2.

1. If a(w) = a(v): The package has reached its destination. Stop.

2. If a(w) < a(v) or a(w) > f,: The destination is not a descendant of v. Send
the package to the parent of v and stop.

3. Otherwise, the destination node lies in a subtree rooted at a child of v. Search
in the local memory the entry (a;,p;) with the smallest a; > a(w) and send
the package through the port numbered with p;.

Clearly this strategy uses O(deg(v)logn) bits local memory at each node v:
three entries of size at most logn bit and deg(v) — 1 entries of size log(n) +
log(deg(v)) bit. Although the total memory over all nodes is only O(nlogn) bits,
such a local memory requirement can be impractical when the node degrees are
not distributed equally over the network and there are nodes with very high
degree. The routing time also depends on the degree of the current node, but
can be bounded from above by O(loglogn) [37].

4.2 An Improved Labeled Routing Scheme for Trees

Thorup and Zwick [35] introduced a direct labeled routing scheme for trees in
the fixed port model that uses only 6logn bits of local memory in each node.
The main idea is to enlarge the addresses of the nodes by storing some routing
information in the addresses. In contrast to the algorithm of Sect. 4.1, the local
memory of a node u here does not contain the port numbers of all edges leading
to child nodes of u, but only the port number of at most one edge leading to
a child node that has a “big” number of successors. The intuition is that then
the depths of the subtrees rooted at the other children v of u cannot exceed a
certain value. More specifically, the depths of these subtrees are bounded from
above by logn (we will prove this bound later), and, therefore, one can afford
for every successor w of such a child v to put the port numbers used on the
path from u to w into the address of w. Altogether, the scheme uses addresses
(and headers) of size (logn)?+logn bit (compared to (logn)-bit addresses in the
scheme introduced in Sect. 4.1). The routing takes only constant time in each
node.

10
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Local memory of node 2
dfsy (= own index)
f2 (= highest index in subtree)
h2 (= index of heavy child)
ly (= #light nodes on path from root)
P»[0] (= port to parent)
1] (= port to heavy child)

W| =] =] Ol =J| D

(4.1.2) (6,1,2) (7,1,3) (12,2,2) (13,2,3) (10,2,3) Py

Fig. 2. Example for the improved routing strategy for trees of Sect 4.2. The picture on
the left shows a tree whose edges are labeled with port numbers. The routing strategy
performs a DFS—uvisiting always the light children before the heavy one—to determine
the indices of the nodes. The addresses of the nodes are written in brackets; heavy nodes
are drawn with two bordering circles. The table on the right shows the local memory
of node 2.

We will now have a closer look at the details. Like in the strategy of Sect. 4.1,
the strategy here also uses a DFS labeling for the nodes, but unlike in Sect. 4.1,
the numbers obtained by this traversal are not directly used as addresses. We
call such a number an indez, and we denote the index of a node v with dfs(v).
Before performing this DFS, the nodes of the tree are partitioned (also by a
DFS) into heavy and light nodes: A node v is called heavy if the subtree rooted
at v contains at least half of the nodes of the subtree rooted at the parent of v.
Nodes that are not heavy are called light; the root is defined to be heavy. The
DFS that determines the indices of the nodes is performed in such a way that
at each node the light children are visited before the heavy child (clearly every
node has at most one heavy child). The following information is stored at each
node v:

— the index dfs, of v,

— the highest address occurring in the subtree rooted at v, denoted with f,,

— if v has a heavy child, the index of the heavy child, denoted with h,; other-
wise hy, = fp + 1,

— the number of light nodes (including v itself if v is light) lying on the path
from the root to v, called the light level of v and denoted with £,,,

— the port number of the edge to the parent of v, denoted with P,[0], and

— the port number of the edge leading to the heavy child of v, denoted with P, [1]
(if v has no heavy child, P,[1] contains an arbitrary entry).

As mentioned before, some routing information is stored in the addresses of
the nodes: The address a(v) of a node v consists of an array (dfs,, Ly 1,Ly2,. ..,
L,,,), where L, ; denotes the port number p(z,y) with y being the i-th light
node on the path from the root to v and x being the parent of y. Fig. 2 shows
an example for the addresses and the local memory used by the scheme.

The routing scheme at a node v performs the following steps to route a
package with destination address (dfsy, Ly, 1, Lw,2, - - - s Lw,e, ):

11
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1. If dfs,, = dfs,: The package has reached its destination. Stop.

2. If dfs,, < dfs, or dfs,, > f,: The destination is not a descendant of v. Send
the package through the edge labeled with P,[0] to the parent of v and stop.

3. If dfs,, > h,: The destination is a node in the subtree rooted at the heavy
child of v (because the heavy child is the last child visited by the DFS). Send
the package through the edge labeled with P,[1] to the heavy child of v and
stop.

4. Otherwise, the destination must be a node in a subtree rooted at a light
child of v. Send the package through the edge labeled with L., ¢, 41 to the
light child of v who lies on the path from v to the destination node (the port
number L,, ¢, +1 can be extracted from the destination address).

Clearly every package that is routed by this algorithm reaches its destination.
Let us discuss the performance—in particular, the memory consumption and
address size—of this strategy. The information stored in each node consists of
at most logn bits for each of the entries dfs,, fu,, hy, £y, Py[0], and P,[1], which
is altogether 6logn bits of local memory per node.

To determine the size of the addresses and headers, it suffices to give a
bound for ¢,,, because clearly the sizes of the addresses are bounded from above
by (14 ¢,)logn bit. Recall the definition of a light node: The subtree rooted at
a light node v contains less than half of the nodes of the subtree rooted at the
parent of v. Hence, if a node v is a descendant of a node v and ¢,, = ¢,, + 1, the
subtree rooted at v contains less than half of the nodes of the subtree rooted at w.
Therefore, the light level £, of each node v can be at most logn. Altogether, the
addresses have a size of (logn)? +logn bit as claimed. Note that the routing can
be performed in constant time and that it is independent from the numbering
of the ports (i.e., it accords to the fixed port model).

By a slight modification the size of the addresses can be further reduced [35].
To this end, the definition of heavy (and light) nodes is modified: A node v is
called heavy if the subtree rooted at v contains at least 1/b (instead of one half)
of the nodes of the subtree rooted at the parent of v for a fixed integer b > 3.
The information stored locally now contains not only one entry P,[1] with the
port number of the edge to one heavy child, but one entry for each of the at
most b — 1 heavy children. Moreover, there is a new field H,[0] containing the
number of heavy children, and the field h, is replaced by new fields H,[i],1 <
i < b containing the indices of all heavy children of v. This information allows
to route every package again in constant time. The modified strategy needs
(2b + 3) logn bits of local memory, but has addresses consisting of only (1 +
log, n) logn bits.

With much more effort, Thorup and Zwick [35] and Fraigniaud and Gavoille [18]
could also give labeled routing strategies for trees in the fixed port model that
need only O((logn)?/loglogn)-bit addresses.

4.3 A Universal Compact Name-Independent Routing Scheme

The algorithms presented in Sect. 4.1 and Sect. 4.2 have been labeled shortest
path routing strategies for trees. Now we will use such a strategy as a subroutine

12
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for a universal name-independent routing strategy. The algorithm of Abraham
et al. [6] that we are going to describe provides a stretch of three for arbitrary
networks in the fixed port model and needs only O(y/n(logn)?/loglogn) bits of
local memory and O((logn)?/loglogn)-bit rewritable headers. The preprocess-
ing can be done in polynomial time, and the routing time is constant.

The main idea behind the routing strategy is to cover the network with
several single source shortest paths spanning trees and to store in every node
of the network for each of these trees an O((logn)?/loglogn)-bit routing table
according to one of the labeled routing strategies mentioned in Sect. 4.2 [18,
35]. A data package will then be routed along one of these spanning trees. In
order to guarantee a stretch of three, only v/nlog n spanning trees are necessary,
and, consequently, the local memory of each node seemingly needs to store only
V/nlogn routing tables, each of size O((logn)?/loglogn) bit. Unfortunately, the
compact shortest path routing scheme used for the routing in the spanning trees
is a labeled routing scheme. This means that the routing tables stored in the
local memories of the nodes are useless if one does not additionally know the
node addresses that are used by the labeled routing strategy and that differ
from the node addresses of the input network for the name-independent routing
scheme.

In order to overcome this difficulty, the routing strategy combines several
ingredients. First of all, we define the vicinity B(v) of a node v as the set of
the by/nlogn nodes closest to v (ties are broken by choosing nodes with small
addresses first) with b being a fixed constant large enough. The second ingredient
is anode coloring ¢ : {1,...,n} — {1,...,y/n} with the following two properties:
At most 24/n nodes are colored with the same color, and for each node v there is
at least one node from each color in its vicinity B(v). (Note that, in contrast to
the colorings occurring in many common graph problems, it is not required that
two adjacent nodes have different colors.) A random coloring would satisfy these
two properties with high probability, but the coloring can also be performed
deterministically in polynomial time [6].

The third ingredient is a hash function h : {1,...,n} — {1,...,y/n} that
maps node addresses to colors such that at most O(y/nlogn) addresses are
mapped onto the same color. Such a hashing can be computed in constant time
[6], for example by extracting (1/2)logn bits from the node addresses.

For the sake of a clear presentation of the main ideas, we will present a
slightly simplified version of the algorithm using only the first two ingredients;
the purpose of the hash function will be explained at the end of the section.
Moreover, we will denote the colors of the nodes with color names instead of
numbers.

After the network is colored such that each node v has a color ¢(v), w.l.o.g. the
color red is designated as a special color, and the following steps are performed:
For each node w whose color ¢(w) is red, a spanning tree T, is constructed that
connects the node w to all other nodes of the network on shortest paths. On
this tree T),, we run the preprocessing algorithm of the labeled routing strategy
mentioned in Sect. 4.2, which computes for each node v of the network an address

13
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Local memory of node 10
Own address ‘ 10

(T2, 10) (= Iocal mem. of node 10 in T3)
T
]

11(Ts,10) (= local mem. of node 10 in Tg)
|
1

(T3, 10) (= local mem. of node 10 in Tj)
]
]

Port to node 1 € B(10) 2
Port to node 2 € B(10) 2
Port to node 5 € B(10) 1
Port to node 9 € B(10) 1
Red node in B(3) 2

A(T%,3) (= addr. of node 3 in T5)| ...
Red node in B(4) 6
ATs,4) (= addr. of node 4 in T5)

Fig. 3. Example for the universal name-independent routing strategy of Sect 4.3. The
picture on the left shows a network with node labels and port numbers. We assume that
the vicinity B(v) of each node v contains four nodes and that the network is colored
with three colors in the preprocessing phase. The red color is displayed as light grey
(nodes 2, 6, and 8 are red); the four nodes 1, 2, 5, and 9 are the vicinity of node 10.
The table on the right shows the local memory of node 10.

and a routing table for routing in T,,. We denote this address with A\(Ty,,v) and
the routing table with u(Ty,,v).
Now the following informations are stored in each node v:

— its address a(v),

— for each red node w € V: the routing table p(Ty, v),

— for each node w € B(v): the port number of the edge leading on the shortest
path from v to w, and

for each node w € V that has the same color as v (i.e., c(w) = ¢(v)): the
number of a red node u € B(w) and the address A(T},, w) of w in the spanning
tree T, of u.

Fig. 3 shows an example for a network and the resulting local memory of one
of its nodes.

To route a data package with destination address a(w), the routing scheme
running at a node v performs the following steps:

1. If a(w) = a(v): The package has reached its destination. Stop.
2. If w € B(v): Send the package to the next node on the shortest path to w,
using the port number stored in the local memory. Stop.

14
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3. If ¢(w) = ¢(v): Overwrite the header of the data package with the number
of a red node u € B(w) and the address A\(Ty,, w) (both values are stored in
the local memory of v) and send the package according to u(T,,w). Stop.
(Each subsequent node x can now use its routing table u(T,,x) and route
the package on the tree T,.)

4. Otherwise: Send the package to a node u € B(v) with ¢(u) = ¢(w). Then u
can look up the adequate red node and start routing the package on the
corresponding spanning tree.

Let us shortly discuss the stretch of this scheme. In the worst case, the node v
sends a package with destination w to a node u; € B(v) with ¢(u1) = ¢(w), and
from there the package is routed on a spanning tree Ty, with us € B(w) to w.

Assume the case that on every shortest path from v to w there is a node x ¢
B(v) U B(w). If we denote with b(v) the “radius” of B(v), that is, b(v) =
max,e g(v) d(v, ), then it clearly holds that b(v) + b(w) < d(v,w). The length
of the path that is tracked by the package is bounded from above by

d(v,uy) + d(ug, us) + d(ug, w)
< b(v) + d(uy,uz) + b(w)
(v) + (d(u1,v) + d(v, w) + d(w, uz)) + b(w)
(v) + (b(v) + d(v,w) + b(w)) + b(w)
d(v,w)

IN A CIA

b
b
3

For the other case (i.e., there is a shortest path from v to w that contains
only nodes from B(v) U B(w)) we cannot prove a stretch of three due to our
simplification. In the original algorithm, not only the spanning trees consisting
of shortest paths to the red nodes are used, but also spanning trees consisting
of shortest paths to all nodes w € B(v) for every node v. A data package from v
to w can then be routed along a path that is composed of two such spanning
trees.

Our second simplification concerns the following question: How can a node v
that has to route a package with destination w ¢ B(v) determine the color of the
node w? To overcome this problem, the original algorithm uses the mentioned
hash function h. Instead of storing in the local memory of a node v informa-
tions for each node w with c¢(w) = ¢(v), it stores informations for each node w

with A(w) = ¢(v). During the routing, a node v then does not have to compute
the color ¢(w) of a destination node w, but only its hash value h(w).

5 Chapter Notes

In Section 3 we have given an overview over some of the most important results
and their sometimes subtle differences. For other overviews see [21, 22, 24, 31, 40].
The algorithms considered in Section 4 have been originally presented by Santoro
and Khatib [33], Thorup and Zwick [35], and Abraham et al. [6], respectively.
Recent work includes, e.g., results of Abraham et al. [1,3-5], Arias et al. [9],
Brady and Cowen [14, 15, 13], and Konjevod et al. [28].
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