
Originally published in Encyclopedia of Algorithms, pages 832–834. Springer, 2008.

Set Cover with Almost Consecutive Ones

Property

2004; Mecke, Wagner

Entry author: Michael Dom∗

INDEX TERMS: Covering Set problem, data reduction rules, enumerative
algorithm.
SYNONYMS: Hitting Set

PROBLEM DEFINITION

The Set Cover problem has as input a set R of m items, a set C of n subsets
of R and a weight function w : C → IR. The task is to choose a subset C ′ ⊆ C
of minimum weight whose union contains all items of R.

The sets R and C can be represented by an m × n binary matrix A that
consists of a row for every item in R and a column for every subset of R in C,
where an entry ai,j is 1 iff the ith item in R is part of the jth subset in C.
Therefore, the Set Cover problem can be formulated as follows.

Input: An m × n binary matrix A and a weight function w on the
columns of A.
Task: Select some columns of A with minimum weight such that
the submatrix A′ of A that is induced by these columns has at least
one 1 in every row.

While Set Cover is NP-hard in general [4], it can be solved in polynomial
time on instances whose columns can be permuted in such a way that in every
row the ones appear consecutively, that is, on instances that have the consecutive
ones property (C1P).1

Motivated by problems arising from railway optimization, Mecke and Wag-
ner [7] consider the case of Set Cover instances that have “almost the C1P”.
Having almost the C1P means that the corresponding matrices are similar to
matrices that have been generated by starting with a matrix that has the C1P
and replacing randomly a certain percentage of the 1’s by 0’s [7]. For Ruf and
Schöbel [8], in contrast, having almost the C1P means that the average number
of blocks of consecutive 1’s per row is much smaller than the number of columns
of the matrix. This entry will also mention some of their results.

∗Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-
07743 Jena, Germany, dom@minet.uni-jena.de.

1The C1P can be defined symmetrically for columns; this article focusses on rows. Set

Cover on instances with the C1P can be solved in polynomial time, e.g., with a linear pro-
gramming approach, because the corresponding coefficient matrices are totally unimodular
(see [9]).

1

Originally published in Encyclopedia of Algorithms, pages 832–834. Springer, 2008.

Notation. Given an instance (A,w) of Set Cover, let R denote the row set
of A and C its column set. A column cj covers a row ri, denoted by ri ∈ cj ,
if ai,j = 1.

A binary matrix has the strong C1P if (without any column permutation)
the 1’s appear consecutively in every row. A block of consecutive 1’s is a maximal
sequence of consecutive 1’s in a row. It is possible to determine in linear time if
a matrix has the C1P, and if so, to compute a column permutation that yields
the strong C1P [2, 3, 6]. However, note that it is NP-hard to permute the
columns of a binary matrix such that the number of blocks of consecutive 1’s in
the resulting matrix is minimized [1, 4, 5].

A data reduction rule transforms in polynomial time a given instance I of an
optimization problem into an instance I ′ of the same problem such that |I ′| < |I|
and the optimal solution for I ′ has the same value (e.g., weight) as the optimal
solution for I. Given a set of data reduction rules, to reduce a problem instance
means to repeatedly apply the rules until no rule is applicable; the resulting
instance is called reduced.

KEY RESULTS

Data Reduction Rules. For Set Cover there exist well-known data reduc-
tion rules:

Row domination rule: If there are two rows ri1 , ri2 ∈ R with ∀c ∈ C :
ri1 ∈ c implies ri2 ∈ c, then ri2 is dominated by ri1 . Remove row ri2 from A.

Column domination rule: If there are two columns cj1 , cj2 ∈ C with
w(cj1) ≥ w(cj2) and ∀r ∈ R : r ∈ cj1 implies r ∈ cj2 , then cj1 is dominated
by cj2 . Remove cj1 from A.

In addition to these two rules, a column cj1 ∈ C can also be dominated
by a subset C ′ ⊆ C of the columns instead of a single column: If there is a
subset C ′ ⊆ C with w(cj1) ≥

∑

c∈C′ w(c) and ∀r ∈ R : r ∈ cj1 implies (∃c ∈
C ′ : r ∈ c), then remove cj1 from A. Unfortunately, it is NP-hard to find a
dominating subset C ′ for a given set cj1 . Mecke and Wagner [7], therefore,
present a restricted variant of this generalized column domination rule.

For every row r ∈ R, let cmin(r) be a column in C that covers r and has
minimum weight under this property. For two columns cj1 , cj2 ∈ C, define
X(cj1 , cj2) := {cmin(r) | r ∈ cj1 ∧ r /∈ cj2}. The new data reduction rule then
reads as follows.

Advanced column domination rule: If there are two columns cj1 , cj2 ∈
C and a row that is covered by both cj1 and cj2 , and if w(cj1) ≥ w(cj2) +
∑

c∈X(cj1
,cj2

) w(c), then cj1 is dominated by {cj2} ∪ X(cj1 , cj2). Remove cj1

from A.

Theorem 0.1 ([7]). A matrix A can be reduced in O(Nn) time with respect to
the column domination rule, in O(Nm) time with respect to the row domination
rule, and in O(Nmn) time with respect to all three data reduction rules described
above, when N is the number of 1’s in A.

In the databases used by Ruf and Schöbel [8], matrices are represented by
the column indices of the first and last 1’s of its blocks of consecutive 1’s. For
such matrix representations, a fast data reduction rule is presented [8], which
eliminates “unnecessary” columns and which, in the implementations, replaces

2

Originally published in Encyclopedia of Algorithms, pages 832–834. Springer, 2008.

the column domination rule. The new rule is faster than the column domination
rule (a matrix can be reduced in O(mn) time with respect to the new rule), but
not as powerful: Reducing a matrix A with the new rule can result in a matrix
that has more columns than the matrix resulting from reducing A with the
column domination rule.

Algorithms. Mecke and Wagner [7] present an algorithm that solves Set

Cover by enumerating all feasible solutions.
Given a row ri of A, a partial solution for the rows r1, . . . , ri is a subset C ′ ⊆

C of the columns of A such that for each row rj with j ∈ {1, . . . , i} there is a
column in C ′ that covers row rj .

The main idea of the algorithm is to find an optimal solution by iterating
over the rows of A and updating in every step a data structure S that keeps all
partial solutions for the rows considered so far. More exactly, in every iteration
step the algorithm considers the first row of A and updates the data structure S
accordingly. Thereafter, the first row of A is deleted. The following code shows
the algorithm.

1 Repeat m times: {
2 for every partial solution C ′ in S that does not cover the first row of A: {
3 for every column c of A that covers the first row of A: {
4 Add {c} ∪ C ′ to S; }
5 Delete C ′ from S; }
6 Delete the first row of A; }

This straightforward enumerative algorithm could create a set S of exponential
size. Therefore, the data reduction rules presented above are used to delete
after each iteration step partial solutions that are not needed any more. To this
end, a matrix B is associated with the set S, where every row corresponds to a
row of A and every column corresponds to a partial solution in S—an entry bi,j

of B is 1 iff the jth partial solution of B contains a column of A that covers

the row ri. The algorithm uses the matrix C :=
(

A B

0 . . . 0 1 . . . 1

)

, which is

updated together with S in every iteration step.2 Line 6 of the code shown
above is replaced by the following two lines:

6 Delete the first row of the matrix C;

7 Reduce the matrix C and update S accordingly; }

At the end of the algorithm, S contains exactly one solution, and this solution
is optimal. Moreover, if the Set Cover instance is nicely structured, the
algorithm has polynomial running time:

Theorem 0.2 ([7]). If A has the strong C1P, is reduced, and its rows are
sorted in lexicographic order, then the algorithm has a running time of O(M3n)
where M is the maximum number of 1’s per row and per column.

Theorem 0.3 ([7]). If the distance between the first and the last 1 in every
column is at most k, then at any time throughout the algorithm the number of
columns in the matrix B is O(2kn), and the running time is O(22kkmn2).

2The last row of C allows to distinguish the columns belonging to A from those belonging
to B.

3

Originally published in Encyclopedia of Algorithms, pages 832–834. Springer, 2008.

Ruf and Schöbel [8] present a branch and bound algorithm for Set Cover

instances that have a small average number of blocks of consecutive 1’s per row.
The algorithm considers in each step a row ri of the current matrix (which

has been reduced with data reduction rules before) and branches into bli cases,
where bli is the number of blocks of consecutive 1’s in ri. In each case, one block
of consecutive 1’s in row ri is selected, and the 1’s of all other blocks in this row
are replaced by 0’s. Thereafter, a lower and an upper bound on the weight of
the solution for each resulting instance is computed. If a lower bound differs by
a factor of more than 1 + ǫ, for a given constant ǫ, from the best upper bound
achieved so far, the corresponding instance is subjected to further branchings.
Finally, the best upper bound that was found is returned.

In each branching step, the bli instances that are newly generated are “closer”
to have the (strong) C1P than the instance from which they descend. If an in-
stance has the C1P, the lower and upper bound can easily be computed by
exactly solving the problem. Otherwise, standard heuristics are used.

APPLICATIONS

Set Cover instances occur e.g. in railway optimization, where the task is to
determine where new railway stations should be built. Each row then corre-
sponds to an existing settlement, and each column corresponds to a location on
the existing trackage where a railway station could be build. A column c covers
a row r, if the settlement corresponding to r lies within a given radius around
the location corresponding to c.

If the railway network consisted of one straight line rail track only, the
corresponding Set Cover instance would have the C1P; instances arising from
real world data are close to have the C1P [7, 8].

EXPERIMENTAL RESULTS

Mecke and Wagner [7] make experiments on real-world instances as described in
the Applications section and on instances that have been generated by starting
with a matrix that has the C1P and replacing randomly a certain percentage
of the 1’s by 0’s. The real-world data consists of a railway graph with 8200
nodes and 8700 edges, and 30000 settlements. The generated instances consist
of 50–50000 rows with 10–200 1’s per row. Up to 20% of the 1’s are replaced
by 0’s.

In the real-world instances, the data reduction rules decrease the number
of 1’s to between 1% and 25% of the original number of 1’s without and to
between 0.2% and 2.5% with the advanced column reduction rule. In the case
of generated instances that have the C1P, the number of 1’s is decreased to
about 2% without and to 0.5% with the advanced column reduction rule. In
instances with 20% perturbation, the number of 1’s is decreased to 67% without
and to 20% with the advanced column reduction rule.

The enumerative algorithm has a running time that is almost linear for real-
world instances and most generated instances. Only in the case of generated
instances with 20% perturbation, the running time is quadratic.

4

Originally published in Encyclopedia of Algorithms, pages 832–834. Springer, 2008.

Ruf and Schöbel [8] consider three instance types: real-world instances, in-
stances arising from Steiner triple systems, and randomly generated instances.
The latter have a size of 100 × 100 and contain either 1–5 blocks of consecu-
tive 1’s in each row, each one consisting of between one and nine 1’s, or they
are generated with a probability of 3% or 5% for any entry to be 1.

The data reduction rules used by Ruf and Schöbel turn out to be powerful
for the real-world instances (reducing the matrix size from about 1100 × 3100
to 100×800 in average), whereas for all other instance types the sizes could not
be reduced noticeably.

The branch and bound algorithm could solve almost all real-world instances
up to optimality within a time of less than a second up to one hour. In all cases
where an optimal solution has been found, the first generated subproblem had
already provided a lower bound equal to the weight of the optimal solution.

CROSS REFERENCES

Greedy Set-Cover Algorithm (entry 00159)

RECOMMENDED READING

[1] J. E. Atkins and M. Middendorf. On physical mapping and the consecutive
ones property for sparse matrices. Discrete Appl. Math., 71(1–3):23–40,
1996.

[2] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. J. Comput.
System Sci., 13:335–379, 1976.

[3] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific J. Math., 15(3):835–855, 1965.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[5] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes
against physical mapping of DNA. J. Comput. Biol., 2(1):139–152, 1995.

[6] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements.
Theor. Comput. Sci., 296(1):99–116, 2003.

[7] S. Mecke and D. Wagner. Solving geometric covering problems by data
reduction. In Proceedings of the 12th Annual European Symposium on Al-
gorithms (ESA ’04), volume 3221 of LNCS, pages 760–771. Springer, 2004.

[8] N. Ruf and A. Schöbel. Set covering with almost consecutive ones property.
Discrete Optim., 1(2):215–228, 2004.

[9] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

5

