
Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

A A  

C-O P

Michael Dom∗

Abstract

We survey the consecutive-ones property of binary matrices. Herein, a

binary matrix has the consecutive-ones property (C1P) if there is a permuta-

tion of its columns that places the 1s consecutively in every row. We provide

an overview over connections to graph theory, characterizations, recognition

algorithms, and applications such as integer linear programming and solving

S C.

1 Introduction

We start with considering a short example for the occurrence of the C1P in practi-

cal applications. The example has its background in computational biology, where

the construction of physical maps for the human DNA was a central issue in the

past years [5, 6, 45, 72, 97]. A physical map is a map that describes the relative

order of markers on a chromosome. A chromosome is basically a long sequence

of DNA, and a marker is a short DNA sequence that appears only once on the

chromosome and, therefore, is of special interest. To create a physical map, the

chromosome is cut into shorter pieces, which are duplicated and called clones.

Thereafter, one tests for each of the clones which of the markers appears on it.

These tests find out whether a marker appears on a clone, but it is not possible

to determine the order of the markers on the clone. The result is a binary ma-

trix where every row corresponds to a clone and every column corresponds to a

marker. If a marker appears on a clone, then the corresponding entry of the matrix

is 1, otherwise it is 0. The crucial observation for finding the correct order of the

markers is that if two markers A and B appear on a clone x, but another marker C

does not appear on x, then C cannot lie between A and B on the chromosome.

Therefore, to figure out the order of the markers on the chromosome, all one has

∗Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena,

Germany, michael.dom@uni-jena.de.

1

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

to do is to order the columns of the matrix in such a way that in every row the 1s

appear consecutively. In concrete practical applications, however, the biochem-

ical methods always produce errors such that it is often impossible to order the

columns in the resulting matrices as described. One way to deal with these errors

is to discard a smallest possible number of clones such that the remaining clones

lead to a consistent order of the markers. On the level of binary matrices, this

approach means that one has to delete a minimum number of rows such that the

resulting matrix has the C1P.

The survey is structured as follows. In the remainder of this section, we

provide the definitions used throughout the paper and some basic observations

and results on the C1P. Section 2 deals with the relation between the C1P and

graph classes. In Section 3, we survey recognition algorithms for the C1P. Sec-

tion 4 describes some cases of problems that are NP-hard in general, but become

polynomial-time solvable on instances with the C1P.

1.1 Preliminaries

An m×n matrix contains m·n entries, which are arranged in m rows and n columns.

The entry in the ith row and jth column of a matrix M is denoted by mi, j; moreover,

we usually use ri and c j to denote the ith row and the jth column, respectively, of

a matrix. One can also regard a matrix as a set of columns together with an order

on this set; the order of the columns is called the column ordering of the matrix.

Two matrices M and M′ are called isomorphic if M′ is a permutation of the rows

and columns of M. A matrix M′ is a submatrix of a matrix M if we can select

a subset of the rows and columns of M in such a way that deleting all but the

selected rows and columns results in a matrix that is isomorphic to M′. If one can

find a submatrix M′ of M in this way, we say that M contains M′ as a submatrix

and that M′ is induced by the selected rows and columns. A matrix M is M′-free

if M′ is not a submatrix of M.

A matrix whose entries are all from {0, 1} is called a binary matrix or 0/1-

matrix; a matrix whose entries are all from {0, 1,−1} is called a 0/±1-matrix. Com-

plementing a column or row of a matrix means that all 1-entries in this column or

row, respectively, are replaced by 0s and all 0-entries are replaced by 1s.

Every 0/1-matrix M can be interpreted as a bipartite graph, which is called the

representing graph GM of M: For every row and every column of a matrix M,

there is a vertex in its representing graph GM, and for every 1-entry mi, j in M,

there is an edge in GM connecting the vertices corresponding to the ith row and

the jth column of M.

Parameterized complexity is a two-dimensional framework for studying the

computational complexity of problems [30, 37, 79]. One dimension is the in-

put size n and the other one a parameter d. A problem is called fixed-parameter

2

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

c1c1 c2c2 c3c3 c4c4

1
1

1
1

11

1
1 1

1

11

1
1
1

1
11

0
0

0
0

00
0

00

0
0

0
0

0
0

0

00

Figure 1: Example for the C1P: The matrix on the left has the C1P because by

permuting its columns (labeled with c1–c4) one can obtain the matrix shown in the

middle where the 1s in each row appear consecutively. The matrix on the right, in

contrast, does not have the C1P [91].

tractable if it can be solved in f (d) ·nO(1) time, where f is a function only depend-

ing on d. The basic concept for parameterized intractability is W[1]-hardness; if a

problem is W[i]-hard for any i ≥ 1, it is presumably not fixed-parameter tractable.

1.2 The Consecutive-Ones Property

The consecutive-ones property of binary matrices appears in many practical appli-

cations, such as scheduling [8, 53, 54, 68, 93], information retrieval [67], railway

optimization [75, 76, 86], and computational biology [3, 5, 6, 18, 45, 72, 97].

Moreover, the C1P has close connections to graph theory (see Section 2) and

plays an important role in the area of solving (integer) linear programs [54, 55,

80, 81, 93] (see also Section 4.1). The formal definition of the C1P and some

related concepts reads as follows.

Definition 1.1. A block of 1s (block of 0s) in a row of a binary matrix M is a

maximal set of consecutive 1-entries (0-entries) in this row. A binary matrix has

the strong consecutive-ones property (strong C1P) if in every row the 1s appear

consecutively, that is, if every row contains at most one block of 1s. A binary

matrix has the consecutive-ones property (C1P) if its columns can be permuted

in such a way that the resulting matrix has the strong C1P. If an ordering for the

columns of a binary matrix yields the strong C1P, it is called a C1-ordering.

See Figure 1 for examples of matrices with and without the C1P. The terms

introduced in Definition 1.1 can be defined analogously for 1-entries appearing

consecutively in the columns of a matrix instead of the rows: If the rows of a

matrix M can be permuted in such a way that in every column the 1s appear

consecutively, then M has the C1P for columns.

A property that is very similar to the C1P but less restrictive is called the

circular-ones property: Here one imagines the matrix as wrapped around a verti-

cal cylinder and demands that, possibly after some column permutations, in every

row the 1s appear consecutively on the cylinder (which implies that the 0s also

appear consecutively):

3

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

c1 c1c1c1c2 c2c2c2c3 c3c3c3c4 c4c4c4

A: B: C: D:

1
1

1
1

11

1
1
1

1
11

1
1 1

1
1

11

1
1 1

1
1
11

0
0
0

0

00
0

0
0

0

00
0

00

00
0

00

00

Figure 2: Example for the Circ1P: The matrix A has the Circ1P because by per-

muting its columns (labeled with c1–c4) one can obtain the matrix B where in each

row the 1s or the 0s appear consecutively. The matrices C and D in contrast, do

not have the Circ1P [90, 91].

Definition 1.2. A binary matrix has the strong circular-ones property (strong

Circ1P) if in every row the 1s appear consecutively or the 0s appear consecu-

tively (or both). A binary matrix has the circular-ones property (Circ1P) if its

columns can be permuted in such a way that the resulting matrix has the strong

Circ1P. If an ordering for the columns of a binary matrix yields the strong Circ1P,

then it is called a Circ1-ordering.

See Figure 2 for an example. When imagining a matrix M as wrapped around

a vertical cylinder, it makes no sense to declare one of its columns as the “left-

most” or “rightmost” column. In this setting, therefore, the term circular column

ordering is used to describe the order of M’s columns: The circular column or-

dering defines for every column c of M a predecessor and a successor, but it does

not declare any of M’s columns as the “leftmost” or “rightmost” column. If M

has the strong Circ1P, then its circular column ordering is called a Circ1-circular

ordering.

There exist several characterizations for matrices having the C1P (see Sec-

tions 2 and 3). Together with the following observation due to Tucker [90], these

characterizations can also be used to recognize matrices with the Circ1P.

Corollary 1.1 (following from [90, Theorem 1]). Let M be an m × n matrix and

let j be an arbitrary integer with 1 ≤ j ≤ n. Form the matrix M′ from M by

complementing all rows with a 1 in the jth column of M. Then, M has the Circ1P

if and only if M′ has the C1P.

An example for Corollary 1.1 can be seen in Figure 2: Complementing in one

of the matrices C and D all rows with a 1 in column c4 yields the matrix D, which

does not have the C1P (this can easily be seen by considering the columns c1–c3);

hence, the matrices C and D do not have the Circ1P. Corollary 1.1 implies the

following conclusion.

Corollary 1.2. Let M be a 0/1-matrix and M′ be the matrix obtained by inserting a

column that contains only 0s to M. Then the following statements are equivalent.

1. M′ has the Circ1P. 2. M′ has the C1P. 3. M has the C1P.

4

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

The relation between different C1-orderings and Circ1-orderings for the

columns of a matrix is summarized by Hsu and McConnell [63]:

Theorem 1.1 ([63, Theorems 3.4 and 3.8]). 1. Let M be a matrix having the C1P.

Then every C1-ordering for M’s columns can be obtained by starting from an

arbitrary C1-ordering and applying a sequence of reverse operations, each of

them reversing a linear module in the respective column ordering.

2. Let M be a matrix having the Circ1P. Then every Circ1-circular ordering

for M’s columns can be obtained by starting from an arbitrary Circ1-circular

ordering and applying a sequence of reverse operations, each of them revers-

ing a circular module in the respective circular ordering.

Thereby, a linear module of a matrix M is a set C of columns such that in

every row of M the entries belonging to C have the same value or the entries not

belonging to C are all 0 (or both). A circular module is a set C of columns such

that in every row of M the entries belonging to C have the same value or the entries

not belonging to C have the same value (or both). A reverse operation takes a set

of consecutive columns from the column ordering or the circular column ordering,

respectively, of a matrix and puts it into reverse order. Clearly, applying a reverse

operation to a linear module (a circular module) of a matrix that has the strong

C1P (the strong Circ1P) does not destroy this property. Theorem 1.1, however,

strengthens this observation.

One consequence of statement 2 in Theorem 1.1 is the following finding,

which states a relation between the Circ1-orderings and the shifted C1-orderings

of the columns of a matrix having the C1P. Thereby, the column ordering of a

matrix M is a shifted C1-ordering if the strong C1P can be obtained by repeatedly

taking the column that is currently placed at the leftmost position and moving it

from there to the rightmost position.

Lemma 1.1 ([28]). Let M be an m × n matrix that has the C1P and contains at

most (n + 1)/2 1s per row. Then every Circ1-ordering for M’s columns is also a

shifted C1-ordering.

2 Graph Classes and the C1P/Circ1P

Matrices can be represented by graphs and vice versa, and, therefore, the C1P is

related to certain properties of graphs.

Graph classes closely related to the C1P or the Circ1P. Given a graph G,

there are several “natural” ways to map G to a matrix that represents all informa-

tion about G. The following definition describes the most common types of such

matrices that represent graphs.

5

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

Definition 2.1. Let G = (V, EG) be a graph with V = {v1, . . . , vn} and EG =

{e1, . . . , em}, and let H = (V1,V2, EH) be a bipartite graph with V1 = {u1, . . . , un1
}

and V2 = {w1, . . . ,wn2
}.

1. The adjacency matrix of G is the symmetric n×n binary matrix M with mi, j = 1

if and only if {vi, v j} ∈ EG.

2. The augmented adjacency matrix of G is the matrix obtained from G’s adja-

cency matrix by setting the entries of the main diagonal to 1.

3. The edge-vertex incidence matrix of G is the m×n binary matrix M with mi, j =

1 if and only if v j is an endpoint of ei. The transpose of the edge-vertex inci-

dence matrix is called the vertex-edge incidence matrix of G.

4. Let c1, . . . , ck be the maximal cliques of G. The maximal clique matrix (also

called vertex-clique incidence matrix) of G is the n × k binary matrix M with

mi, j = 1 if and only if vi belongs to c j.

5. The half adjacency matrix of H is the n1 × n2 binary matrix M with mi, j = 1 if

and only if {ui,w j} ∈ EH.

Figures 3 and 5 show the matrix types introduced in Definition 2.1. Clearly, a

matrix M is the half adjacency matrix of a bipartite graph H iff H is the represent-

ing graph of M.

Some elementary graph classes that are directly related to the properties C1P

and Circ1P are defined as follows.

Definition 2.2. 1. A graph is convex-round if its adjacency matrix has the Circ1P,

and it is concave-round if its augmented adjacency matrix has the Circ1P [7].

2. A graph G is an interval graph if its vertices can be mapped to intervals on the

real line such that two vertices are adjacent if and only if their corresponding

intervals overlap [9, 52]. If all intervals have the same length, then G is a unit

interval graph; if no interval properly contains another interval, then G is a

proper interval graph.

3. A graph G is a circular-arc graph if its vertices can be mapped to a set A of arcs

on a circle such that two vertices are adjacent if and only if their corresponding

arcs overlap. A circular-arc graph G is a Helly circular-arc graph if for every

subset A′ ⊆ A it holds that (∀a1, a2 ∈ A′ : a1 ∩ a2 , ∅)⇒
⋂

a∈A′ a , ∅.

4. A bipartite graph is convex if its half adjacency matrix has the C1P, it is bicon-

vex if its half adjacency matrix has the C1P both for rows and for columns, and

it is circular convex if its half adjacency matrix has the Circ1P.

See Figures 3 and 4 for illustrations. Interval graphs and circular-arc graphs

are known in graph theory for a long time; they are well-studied (alone for the

recognition problem of these graphs there exists a number of results, see [13,

6

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

w1

w2

w3

w4

u1

u2

u3

u4

u5

v1

v4

v5

v6

v6

v1

v2

v2

v3

v3

v4

v5

v1

v1v1

v2

v2v2

v3

v3v3

v4

v4v4

v5

v5v5

v6

v6v6

v1

v1v1

v1

v2

v2v2

v2

v3

v3v3

v3

v4

v4v4

v4

v5

v5v5

v5

v6

v6v6

v6

c1 c2 c3 c4

w1 w2 w3 w4

u1

u2

u3

u4

u5

G1:

G2:

H :A: B:

C:D:
E:

1

1
1
1

11
1

1 1
1

1
1

1

1
11
1

1
1

11

1
11

1
1
1

1

1

1
1

1
1

1

1
1
1

111
111

111
11111

11111
11111

1

1
1

1

1
1

11
1

1

1
1

1

1
1
1

1

1

1

1
1

1

1

1

1

1
1

1

0
0
0

00

0
00

00
0

0 0

0
0

0

0
0
0

000
000
000
0

0
0

0

0
00
0

0

0
0

0

0
0
0

0

0

0
0

0
0

0
0

0

0
00
0

0
0

0

0 0
0

0

Figure 3: Matrices defined in Definition 2.1. Matrix A is the adjacency matrix of

the graph G1, and Matrix B is the augmented adjacency matrix of G1. Matrix C

is obtained from B by permuting the rows and columns; the shapes enclosing its

1-entries illustrate the quasi Circ1P (see Definition 2.3), which will be used in

Table 1. (Actually, the matrix C shows not only that B has the quasi Circ1P, but

also that B has the Circ1P.) Matrix D is the maximal clique matrix of G2, and

Matrix E is the half adjacency matrix of the bipartite graph H. Matrix C shows

that G1 is a concave-round graph (see Definition 2.2) as well as a circular-arc

graph (see Table 1), Matrix D shows that G2 is an interval graph (see Table 1), and

Matrix E shows that H is a convex bipartite graph (see Definition 2.2).

23, 38, 47, 58, 62, 66, 69] for the recognition of interval graphs and [31, 59,

65, 73, 92] for the recognition of circular-arc graphs) and have applications in

many fields [15, 46]. One reason for the attention that these two graph classes

attract is that many problems that are NP-complete on general graphs (for ex-

ample, I S) are polynomial-time solvable on interval graphs and

circular-arc graphs and also on the other graph classes mentioned in Definition 2.2

(see [1, 15, 46]). This important fact carries over to matrices with the C1P or

the Circ1P, where many in general NP-hard matrix problems can be solved in

polynomial time [22, 32, 70, 78, 93] (see also Section 4 and [75, 76, 86]). We

summarize the relationships between the graph classes of Definition 2.2 on the

one hand and the C1P or Circ1P occurring in the matrices of Definition 2.1 on

the other hand in Table 1. Note that, since proper interval graphs coincide with

unit interval graphs [85, 40], there is only one row for both classes. The property

“quasi Circ1P” occurring in the table is defined as follows.

Definition 2.3 ([90]). A symmetric matrix has the quasi Circ1P if (possibly after

permuting the rows and columns without destroying the symmetry) for every 1-

7

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

v1

v2 v3 v4

v5 v6

v1

v2

v3

v4

v5
v5

v6

v6

v6

v1

v1

v2

v2

v3

v3
v4v4

v5

Figure 4: Left: An interval graph (which is not a proper or unit interval graph) and

a set of intervals representing its vertices as described in Definition 2.2. Right:

A circular-arc graph (which is not a Helly circular-arc graph) and a set of arcs

representing its vertices as mentioned in Definition 2.2.

entry mi, j it holds that mi,i = mi,(i+1) mod n = mi,(i+2) mod n = . . . = mi,(j−1) mod n = mi, j =

1 or that m j, j = m(j+1) mod n, j = m(j+2) mod n, j = . . . = m(i−1) mod n, j = mi, j = 1.

Thereby, i mod j is defined as i mod j =

{
i mod j if i mod j > 0

j if i mod j = 0
with

i mod j denoting the remainder of the division i by j. The quasi Circ1P is il-

lustrated in Figure 3. The Circ1P always implies the quasi Circ1P [90].

Table 1 does not contain graphs whose vertex-edge incidence matrix or edge-

vertex-edge incidence matrix has the C1P; however, these graphs also have a very

special structure.

Definition 2.4. A caterpillar is a tree in which every non-leaf vertex has at most

two non-leaf neighbors.

The two characterizations given in the following theorem follow directly from

the results of Tucker [91] described in the following paragraph and from the con-

siderations of Hajiaghayi and Ganjali [51] and Tan and Zhang [88].

Theorem 2.1. A graph is a union of vertex-disjoint paths if and only if its edge-

vertex incidence matrix has the C1P. A graph is a union of vertex-disjoint cater-

pillars if and only if its vertex-edge incidence matrix has the C1P.

See Figure 5 for an illustration.

Tucker’s characterization of matrices having the C1P. Matrices with the C1P

can be characterized by a set of forbidden submatrices: A matrix has the C1P iff

it does not contain a matrix from this set as a submatrix. Such a characterization

is very helpful when regarding matrix modification problems where one has to

modify a matrix to achieve the C1P (see Section 1).

The characterization by Tucker [91] is based on a characterization of convex

bipartite graphs in terms of so-called asteroidal triples defined as follows.

8

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

Table 1: Relationship between graph classes and matrix properties. The symbol

“⇒” expresses that the membership in a graph class implies the matrix property

for the matrix associated with the corresponding graph; the symbols “⇐” and “⇔”

denote implications in the back direction and in both directions, respectively. The

abbreviation “C1P r+c” stands for “C1P for rows and for columns.” Of course,

due to its symmetry an (augmented) adjacency matrix has the C1P or the Circ1P

for rows iff it has the C1P or the Circ1P, respectively, for columns.

graph

class

adjacency

matrix

augmented

adjacency

matrix

half

adjacency

matrix

maximal

clique

matrix

convex-

round
⇔ Circ1P

(per def.)

concave-round
⇔ Circ1P

(per def.)

⊇

circular-arc

⇔ quasi Circ1P

[90]

⇐ Circ1P

[90]

⇐ Circ1P

⊆

Helly

circular-arc

⇒ quasi Circ1P

⇐ C1P

⇔ Circ1P

[43]

⊆

interval
⇒ quasi Circ1P

⇐ C1P
⇔ C1P [38]

⊆

proper / unit

interval
⇔ C1P [85]

⇔ C1P r+c

[35]

circular

convex bipart.

⇔ Circ1P

(per def.)

⊆

convex bipart.
⇔ C1P

(per def.)

⊆

biconvex

bipart.

⇔ C1P r+c

(per def.)

9

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

v5

v12

v1

v2

v9

v1
v2

v3

v3

v4

v4 v5

v6

v6

v7

v7

v8
v10

v11

v13

v14

v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

1
1

1 1
1

1

1 1
1
1

1

1

1
1
1 11

1
1

1 111
1

1 1
1 1

1 1
1 1

1 1

0
0

0 0
0
0

0
0

0
0

0
0

0
0

0 0

00
00
00
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00
00
0
00
00

0
0

0
0

0
0

0
0

00
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
00
00
00
00
00

0
0

0

0

0
0

0
0

0
0

0
0

0
0

0

0
0
0

00
00
00
00
00

0
0
0

0
00 00

0
0 0 00

0 0 00

00 0
0
00

0
0 000

000
0
0

Figure 5: Top left: A graph that is a union of vertex-disjoint paths, and its edge-

vertex incidence matrix. Bottom and right: A graph that is a union of vertex-

disjoint caterpillars, and its vertex-edge incidence matrix. Both matrices have the

C1P.

Definition 2.5. Let G = (V, E) be a graph. Three vertices from V form an as-

teroidal triple if between any two of them there exists a path in G that does not

contain any vertex from the closed neighborhood of the third vertex.

For example, every cycle of length at least six contains several asteroidal

triples. More examples for graphs containing asteroidal triples are shown in Fig-

ure 6. In his characterization, Tucker does not use the term “convex bipartite

graph”; however, convex bipartite graphs are identical to “graphs with a V2-

consecutive1 arrangement.” The following two theorems, hence, characterize

convex bipartite graphs.

Theorem 2.2 ([91, Theorem 6]). A bipartite graph G = (V1,V2, E) has a V2-

consecutive1 arrangement if and only if V2 contains no asteroidal triple of G.

Theorem 2.3 ([91, Theorem 7]). In a bipartite graph G = (V1,V2, E) the ver-

tex set V2 contains no asteroidal triple1 if and only if G contains none of the

graphs GIk
, GIIk

, GIIIk
(with k ≥ 1), GIV, and GV as shown in Figure 6.

A characterization that is very similar to the one given in Theorem 2.2 is also

known for interval graphs: A graph is an interval graph iff it is chordal and con-

tains no asteroidal triple [71]. The following theorem, which finally characterizes

matrices with the C1P, is a direct consequence of Theorems 2.2 and 2.3.

1Tucker considers the C1P for columns, whereas we describe the C1P for rows. Hence, the

roles of V1 and V2 are interchanged here compared to Tucker’s publication [91].

10

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

GIk
: GIIk

: GIIIk
: GIV: GV:

xx xx

y

yy

y z

zz

z

· · ·· · ·· · ·
k k + 1 k + 1

Figure 6: Forbidden induced subgraphs due to Tucker [91]: The vertex set V2 of

a bipartite graph G = (V1,V2, E) contains an asteroidal triple iff G contains one of

the displayed graphs as an induced subgraph, where white vertices correspond to

vertices in V2. The numbers k and k + 1 refer to the number of black vertices in

the lower parts of the first three graphs. In the case of the graph GIk
∈ T , every

triple of white vertices is an asteroidal triple. In all other cases, there is exactly

one asteroidal triple consisting of white vertices; this triple is denoted by x, y, z.

k + 2

k + 2

MIk
, k ≥ 1

k + 3

k + 3

MIIk
, k ≥ 1

k + 3

k + 2

MIIIk
, k ≥ 1

MIV MV

· · ·
· · ·· · ·

· · ·· · ·

· · ·
· · · · · · · · ·· · ·

· · · · · ·
· · · · · · · · ·· · ·

111
11

11
11

111
1111
11

11

11
1 1

11
11

1 11
1 1

11
11

1 1
11

1

1 1

11
11

000
0000

00
0

0
00

0
0

00
0

00 0
0 00

0 0
0

0
0

0

00
0

00
0 00

0
0

00
0

0
0

0 00

0
0

00
0

Figure 7: The forbidden submatrices for the C1P due to Tucker [91], given in

Theorem 2.4.

Theorem 2.4 ([91, Theorem 9]). A matrix M has the C1P if and only if it contains

none of the matrices MIk
, MIIk

, MIIIk
(with k ≥ 1), MIV, and MV as shown in

Figure 7 as a submatrix.2

Clearly, if a matrix M does not have the C1P, then it is possible to find in

polynomial time one of the submatrices MIk
, MIIk

, MIIIk
, MIV, and MV in M: just

check for every row and every column of M whether the matrix that results from

the deleting the row or column, respectively, still does not have the C1P. It is also

possible to find in polynomial time one of these submatrices that has a minimum

number of rows, a minimum number of columns, a minimum number of rows and

columns, or a minimum number of entries [24]; however, we are not aware of a

linear-time algorithm for this task. To our knowledge, there is no characterization

2The roles of rows and columns are interchanged here compared to Tucker’s publication [91].

11

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

similar to Theorem 2.4 for matrices with the Circ1P, although there is a kind of

refinement of Theorem 2.4 with regard to the Circ1P [26, Theorem 4].

3 Recognizing the C1P

The C1P can be recognized in linear time. In this section, we survey several of

the recognition algorithms. As we will see (Theorem 3.2), every algorithm that

recognizes interval graphs can also be used to recognize matrices with the C1P.

However, here we mention only those results that explicitly deal with matrices

and the C1P, because first transforming a matrix into a graph and then testing

whether this graph is an interval graph does not automatically yield an efficient

(that is, linear-time) algorithm for recognizing the C1P. Some of the publications

surveyed in this section consider the C1P for rows and some the C1P for columns;

to give a consistent presentation, we formulate all results in terms of the C1P for

rows. The following definition introduces some terms needed in this section.

Definition 3.1. Two rows r1, r2 of a 0/1-matrix overlap if there exist three columns

c1, c2, c3 such that column c1 contains a 1 in both rows r1 and r2, column c2 con-

tains a 1 in r1 but not in r2, and column c3 contains a 1 in r2 but not in r1.

A column c1 contains a column c2 if for every row r it holds that if c2 has a 1

in row r then c1 also has a 1 in row r. If a column is not contained in any other

column, it is maximal.3

Using overlapping rows. The first polynomial-time algorithm to recognize ma-

trices having the C1P4 was presented by Fulkerson and Gross [38]. Their idea

is to decompose the input matrix M into disjoint row sets in such a way that the

whole matrix has the C1P iff each matrix induced by one of the row sets has the

C1P. The partitioning of M’s rows into different row sets is performed by defining

an overlap graph G(M): Every vertex of this graph corresponds to a row of M,

and two vertices are connected iff their corresponding rows overlap. Every con-

nected component of this graph defines one row set of the partition of M needed

by the algorithm. Now, for the columns of every submatrix of M that is induced

by one of the row sets of the partition, a C1-ordering can easily be found, if ex-

isting, by considering one row after the other in a certain order and re-arranging

the columns if necessary. In the last phase of the algorithm, the column orderings

3Note that this definition of a maximal column does not allow the existence of two identical

maximal columns.
4Fulkerson and Gross [38] as well as Booth and Lueker [13] consider the C1P for columns,

whereas we describe the C1P for rows. Hence, the roles of rows and columns are interchanged

here compared to the original publications.

12

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

computed for the submatrices are combined, while possibly re-arranging some of

the columns. The whole matrix M has the C1P iff all of the submatrices have the

C1P [38, Theorem 4.1]. The whole procedure takes polynomial time. A more

recent linear-time algorithm by Hsu [61] for recognizing the C1P is based on very

similar ideas.

PQ-Trees. Booth and Lueker were the first to present a linear-time algorithm for

recognizing matrices with the C1P4 [13]. Linear time means a running time that

is linear in the number of columns plus the number of rows plus the number of

1-entries of the given matrix. Booth and Lueker introduced so-called PQ-Trees,

which are not only useful for recognizing matrices with the C1P, but also, for

example, for recognizing matrices with the Circ1P and for recognizing interval

graphs and planar graphs. In the context of recognizing matrices with the C1P, a

PQ-tree is an ordered rooted tree that represents a C1-ordering for the columns of

a matrix M. To this end, the inner nodes of the PQ-tree are labeled as P-nodes and

Q-nodes, and the leaves one-to-one correspond to the columns of the underlying

matrix M. Ordering the columns of M in the same way as their corresponding

leaves in the PQ-tree yields the strong C1P. In addition, any PQ-tree for M im-

plicitly represents all possible C1-orderings for M’s columns because by applying

a series of certain node reordering operations every possible PQ-tree for the set of

M’s columns can be transformed into any other possible PQ-tree for this column

set. Therefore, PQ-trees have the following properties.

1. If T is a PQ-tree for a matrix M, then the sequence of T ’s leaves from left to

right describes a C1-ordering for M’s columns.

2. Each C1-ordering for M’s columns one-to-one corresponds to a PQ-tree.

3. The set of PQ-trees for the columns of a matrix is closed under the following

two operations:

• Arbitrarily reordering the children of a P-node.

• Putting the children of a Q-node in reverse order.

In particular, none of these two operations destroys property 1.

See Figure 8 for an illustration. In order to either construct a PQ-tree for a given

matrix M or decide that M does not have the C1P, the algorithm of Booth and

Lueker starts with a tree (the so-called universal PQ-tree) consisting of one P-

node forming the root and one leaf node for every column of M. The algorithm

considers the rows of M one after the other, and in every step it either reports

that M does not have the C1P, or it modifies the tree, by using a complicated case

distinction, in such a way that the resulting tree is a PQ-tree for the matrix that is

induced by the rows considered so far.

13

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

P

PPQ

Q

111
111

111111
1 1 1 1

0

0 0 0 0
0

0 0
0 0

0
0

0
0

0 0

Figure 8: A matrix M and the PQ-tree representing the column ordering of M.

Variations of PQ-Trees. Several variations of PQ-trees have been proposed

since their first appearance. Korte and Möhring [66] introduced MPQ-trees (“mod-

ified PQ-trees”), where the inner nodes contain some additional information, which

results in a simpler construction of these trees. Meidanis et al. [77] defined PQR-

trees, which are a generalization of PQ-trees in the following sense: For every

matrix M that has the C1P for columns, the set of PQR-trees for M’s rows is

identical with the set of PQ-trees for M’s rows. However, in contrast to PQ-trees,

PQR-trees are also defined for matrices that do not have the C1P for columns; in

this case they contain, in addition to P-nodes and Q-nodes, inner nodes labeled

as R-nodes, which can be useful for identifying why the matrix does not have the

C1P. A similar approach was used by McConnell [74]. He introduced general-

ized PQ-trees in order to determine if a matrix has the C1P for rows and, if it

does not, to generate a “certificate” therefor: Such a certificate is a small (com-

pared to the size of the input matrix) proof that can be verified by a “fast and

uncomplicated” polynomial-time algorithm (for more details about such certifi-

cates see [69]). The certificate produced by the algorithm of McConnell [74] for

an m× n input matrix M consists of an odd cycle of length at most n + 3 in the so-

called incompatibility graph of M. This graph is defined as the graph G = (V, E)

with

V ={(j1, j2) | 1 ≤ j1 ≤ n ∧ 1 ≤ j2 ≤ n ∧ j1 , j2}

E ={{(j1, j2), (j2, j1)} | 1 ≤ j1 < j2 ≤ n} ∪

{{(j1, j2), (j2, j3)} | j1 , j3 ∧

∃i ∈ {1, . . . ,m} : (mi, j1 = mi, j3 = 1 ∧ mi, j2 = 0)}.

Intuitively speaking, the incompability graph contains two vertices for every pair

of columns of M: one vertex for every possible relative ordering of the two

columns. If two vertices (j1, j2) and (j3, j4) in the incompatibility graph are con-

nected by an edge, then the corresponding two orderings conflict in the sense that

there is no C1-ordering for M’s columns that places the column j1 to the left of j2

and the column j3 to the left of j4. See Figure 9 for an example. The connection

14

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

c1 c2 c3 c4

(1, 2) (2, 1)

(1, 3) (3, 1)

(1, 4)(4, 1)

(2, 3)(3, 2)

(2, 4) (4, 2)

(3, 4)(4, 3)1

1

1

1

1

1

00

0

0

0

0

Figure 9: The matrix MIII1
and its incompability graph [74]. The graph contains

several odd cycles of length 7.

between the incompability graph of a matrix and the C1P is specified in the follow-

ing theorem. The original formulation of this theorem is due to McConnell [74]

and contains a minor error concerning the cycle length.

Theorem 3.1 ([74, Theorem 6.1]). An m × n matrix M has the C1P iff its incom-

patibility graph is bipartite. If M does not have the C1P, then its incompatibility

graph has an odd cycle of length at most n + 3.

PC-Trees. A remarkable simplification for building PQ-trees was exhibited by

Hsu and McConnell [63], who introduced PC-trees. These trees can be seen as

unrooted PQ-trees that represent Circ1-circular orderings for the columns of a

matrix instead of C1-orderings. Instead of Q-nodes, PC-trees contain C-nodes;

the order of the leaves of a PC-tree describes a Circ1-circular ordering for the

columns of the underlying matrix. PC-trees have the following properties.

1. If T is a PC-tree for a matrix M, then any sequence obtained by considering

T ’s leaves in clockwise or counter-clockwise order describes a Circ1-circular

ordering for M’s columns.

2. Each Circ1-circular ordering for M’s columns one-to-one corresponds to a PC-

tree.

3. The set of PC-trees for the columns of a matrix is closed under the following

two operations:

• Arbitrarily reordering the neighbors of a P-node.

• First rooting T at a neighbor of a C-node v, then “flipping” the subtree

whose root is v, and finally un-rooting the tree. Herein, “flipping” a sub-

tree means putting the children of every node of the subtree in reverse

order.

In particular, none of these two operations destroys property 1.

15

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

c1c1c1 c2c2c2
c3c3

c3

c4

c4

c4

c5c5

c5

c6

c6

c6

c7c7

c7

c8c8

c8 c9

c9c9

c10

c10c10

PP

C

CC

C

CC

1

11

11
11

11
11

1111111
11

11

0
0
0
0

00000000

0

0

0
0

0
0 0 00

0 00

0 00
0 00

00

000000
0

0 0
00
000

0

0
00000000

0
0

Figure 10: PC-trees for a matrix. Left: a matrix M. Middle: the PC-tree repre-

senting the circular column ordering of M. Right: The PC-tree obtained from the

PC-tree in the middle by “flipping” the subtree rooted at the bottom-right C-node.

See Figure 10 for an illustration.

Like in the case of PQ-trees, there is a linear-time algorithm that either con-

structs a PC-tree for a given matrix M or decides that M does not have the

Circ1P [63]. Similarly to the algorithm of Booth and Lueker [13], this algorithm

starts with a tree consisting of one P-node which has one leaf neighbor for every

column of M. The algorithm considers the rows of M one after the other, and in

every step it either reports that M does not have the Circ1P, or it modifies the tree.

These modifications, however, are much simpler than those proposed by Booth

and Lueker for updating a PQ-tree.

Due to Corollary 1.2, the PC-tree algorithm can not only be used to decide

whether a matrix has the Circ1P, but also to decide whether it has the C1P: Just

add a column that contains only 0s to the given matrix. Rooting the PC-tree for

the resulting matrix at the neighbor of the leaf node that corresponds to the newly

inserted column and then deleting this leaf node yields a PQ-tree for the original

matrix.

Further recognition algorithms. A simple linear-time algorithm without using

any variant of PQ-trees was presented by Habib et al. [47]: They use a so-called

“Lex-BFS ordering” of the vertices of a graph to decide in linear time whether

the graph is an interval graph. Habib et al. also prove Theorem 3.2 below, which

implies that any algorithm recognizing interval graphs can also be used for recog-

nizing matrices with the C1P. Habib et al. show that the recognition of matrices

with the C1P in this way is possible in linear time.

For describing how an algorithm recognizing interval graphs can be used to

decide whether a given matrix M has the C1P, let Gra(M) denote the graph that

has one vertex for every row of M and where two vertices are adjacent iff their

corresponding rows in M have a 1 in a common column; we call this graph the

16

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

row adjacency graph of M. Note that several matrices can have identical row

adjacency graphs; moreover, if a matrix M is the maximal clique matrix of a

graph G, then G is the row adjacency graph of M. The latter observation leads to

the following finding.

Theorem 3.2 ([47, Theorem 2]). For a 0/1-matrix M the following statements are

equivalent:

1. The row adjacency graph Gra(M) is an interval graph and M is its maximal

clique matrix.

2. The columns of M are maximal and M has the C1P for rows.

By appending a size-n × n unit matrix I to a matrix M, a matrix M̃ =

(
M

I

)
can be constructed, which obviously has the following properties: M̃ has the C1P

iff M has the C1P, and every column of M̃ is maximal.5 Testing whether M has

the C1P now obviously reduces to checking whether Gra(M̃) is an interval graph

and M̃ is its maximal clique matrix. However, note that using Theorem 3.2 in

combination with a linear-time algorithm for recognizing interval graphs does not

automatically yield a linear-time algorithm for recognizing matrices with the C1P.

Nevertheless, Habib et al. give an algorithm using Theorem 3.2 for recognizing

matrices with the C1P in linear time.

Clearly, if the columns and rows of a matrix M shall be permuted such that the

resulting matrix contains at most one block of 1s per row and column, this can be

done in linear time by first permuting the columns and then permuting the rows.

However, weighted variants of this problem can be NP-hard [83]. Finally, we like

to point out that recognizing matrices that have “almost the C1P” is much more

difficult than recognizing matrices with the C1P: While matrices with the C1P can

be recognized in linear time, the problem of deciding whether the columns of a

matrix M (not having the C1P) can be permuted in such a way that the overall

number of blocks of 1s is at most k is NP-complete [41, 48] (see also [49]); decid-

ing whether M’s columns can be permuted such that the number of blocks of 1s

in each row is at most c is NP-complete for every constant c ≥ 2 [6, 36, 45, 96]

(see also [12, 97]). However, there are algorithms for recognizing matrices that

are “close” to having the C1P in some other sense [60, 72].

Deciding whether matrix can obtain the C1P by deleting a given number d of

rows or columns is NP-complete [41, 50, 51, 88]—however, for special cases there

are approximation and fixed-parameter algorithms [26] (see [24] for a detailed

overview). In related problems, 0-entries have to be flipped (that is, replaced

5In the original paper, published in the Bulletin of the EATCS, 98:27–59, there is an error in

the description of M̃’s properties.

17

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

by 1-entries) in order to obtain the C1P [41, 94], or arbitrary entries have to be

flipped [82]. For all variants of these matrix modification problems as well as for

the recognition of matrices being “close” to the C1P, (further) approximation and

fixed-parameter results would be desirable.

4 Hard Problems on Instances with the C1P/Circ1P

Many in general NP-hard problems become polynomial-time solvable when re-

stricted to inputs that have the C1P. In this section, we consider the in general

NP-complete problems I L P and S C.

4.1 Integer Linear Programming with Coefficient Matrices hav-

ing the C1P/Circ1P

Here, we consider the connection between matrices with the C1P or Circ1P and

the hardness of solving integer linear programs (ILPs). While solving ILPs in

general is NP-hard (see Section 4.1.1), we are here interested in the solvability

of ILPs in the special case where the matrix consisting of the coefficients of the

inequations has the C1P—such ILPs occur, for example, in biological applica-

tions [3]—or the Circ1P.

The algorithms that we consider do not only work for ILPs with 0/1-

coefficient matrices, but also for ILPs whose coefficient matrices consist of entries

from {0, 1,−1}. Therefore, we extend the definition of the C1P to 0/±1-matrices

as follows: A 0/±1-matrix has the C1P if every row contains only entries either

from {0, 1} or from {0,−1} and the columns can be permuted such that in every

row the non-zero entries appear consecutively. The Circ1P for 0/±1-matrices is

defined analogously. We refer to Schrijver [87] for more details on (integer) linear

programming.

4.1.1 (Integer) Linear Programming Basics

A linear program (LP) is an instance of the following optimization problem.

L P

Input: An m × n matrix A = (ai, j), an n-entry column vector ~b and an

m-entry row vector ~c T with all entries in A, ~b, ~c T fromQ.

Task: Find an m-entry column vector ~x that satisfies A~x ≤ ~b and

maximizes ~c T~x.

In other words, the task is to assign values to a set of variables x1, . . . , xn (the

entries of the vector ~x) such that a set of m inequations (given by the matrix A and

18

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

the vector ~b) are satisfied and that the value of a linear objective function (given

by the vector ~c T) is maximized. An assignment of values to the variables that

satisfies the given inequations is called a (feasible) solution for the LP. A vector

containing only integers is called integral. The variant of L P

where only integral solutions are allowed is called I L P;

its instances are called integer linear programs (ILPs). There are also decision

problems corresponding to the optimization problems L P and

I L P. The instances of these decision problems contain

no objective function (no vector c); the task is to decide if there is any feasible

solution.

L P can be solved in polynomial time. In particular, there is

an algorithm for solving LPs that needs O((n3/ ln n)L) arithmetic operations [4]

(see also [84] for an overview over efficient algorithms for solving LPs), where L

is the total bit number of the input. In contrast, it is easy to see that I

L P is NP-hard. Actually, the decision version of I L

P is NP-complete [14, 95, 64, 57].

An LP (ILP) is called feasible if it admits a feasible solution, and unfeasible

otherwise. Given an LP on n variables, one can interpret its solution space as an

n-dimensional Eukledian space; every inequation of the LP defines a half-space

that contains all value-to-variable assignments satisfying this inequation. The in-

tersection of all the half-spaces defined by the inequations of an LP is called the

polyhedron defined by the LP. If the polyhedron defined by an LP is integral,

which means that each of its corners corresponds to an integral solution, then

the ILP defined by the matrix A and the vectors ~b, ~c T of the LP can be solved in

polynomial time by solving the LP.

Given an LP Maximize ~c T~x subject to A~x ≤ ~b, then the problem Minimize ~z T~b
subject to ~z TA = ~c T,~z T ≥ ~0 T is called the dual (problem) for the given LP—here

the task is to find an optimal row vector ~z T. The dual problem has a well-defined

optimal solution iff the original LP has a well-defined optimal solution; if this is

the case then it holds that max{~c T~x | A~x ≤ ~b} = min{~z T~b | ~z TA = ~c T ∧ ~z T ≥ ~0 T}.

Note that if the coefficient matrix of an LP has the C1P (Circ1P) for columns,

then the coefficient matrix of its dual has the C1P (Circ1P) for rows. Therefore,

all algorithms described below can be used for solving ILPs whose coefficient

matrices have the C1P (Circ1P) for rows or the C1P (Circ1P) for columns.

4.1.2 Totally Unimodular Matrices

The problem I L P is NP-hard. However, there are special

cases that can be solved in polynomial time. Here, we consider the special case

where the coefficient matrix A of the ILP is “totally unimodular”—in this case,

the polyhedron defined by A~x ≤ ~b is integral for every integral vector ~b. We will

19

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

see that matrices with the C1P have this property. For a more detailed description

of classes of matrices see [15, 21, 46, 87].

Definition 4.1. A 0/±1-matrix is totally unimodular if every square submatrix has

determinant 0, 1, or −1.

There is a useful “bicolorability” characterization for totally unimodular ma-

trices.

Theorem 4.1 ([44]). An m× n matrix A with entries 0, 1,−1 is totally unimodular

if and only if each collection of columns from A can be partitioned into two column

sets such that in each row the sum of the entries of the first set and the sum of the

entries of the second set differ by at most 1.

The following theorem shows the polynomial-time solvability of ILPs with

totally unimodular coefficient matrices.

Theorem 4.2 ([56]). Let A be an m × n integral matrix. Then the polyhedron

defined by A~x ≤ ~b, ~x ≥ ~0 is integral for every integral vector ~b ∈ Zm if and only

if A is totally unimodular.

From Theorem 4.2 it follows that for every totally unimodular matrix A, every

integral vector ~b and every vector ~c T the ILP

Maximize ~c T~x

subject to A~x ≤ ~b

~x ≥ ~0
~x is integral

(1)

can be solved with O((n3/ ln n)L) arithmetic operations [4], where L is the total

bit number needed for encoding the ILP.

In the case of totally unimodular coefficient matrices A, the polyhedron de-

fined by A~x ≤ ~b, ~x ≥ ~0 is integral for every integral vector ~b. There exist also

matrices with the property that the polyhedron is integral only for certain vec-

tors ~b, these matrices are called balanced [10, 11, 20, 39, 89].

4.1.3 ILPs with Coefficient Matrices having the C1P

The first method to solve ILPs whose coefficient matrices have the C1P is to use

the fact that any matrix A having the C1P clearly fulfills the conditions of Theo-

rem 4.1 and, hence, is totally unimodular. To see this, consider an arbitrary col-

lection of columns from A and order them according to the C1P. Partitioning the

columns by putting every second column, starting with the first, into one column

20

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

set and every remaining column into the other column set leads to a partitioning

as required in Theorem 4.1 (see also [78, page 544]). Therefore, if a matrix A has

the C1P, then for every integral vector ~b and every vector ~c T the ILP shown in (1)

can be solved in polynomial time due to Theorem 4.2.

Using Theorem 4.2 to solve ILPs with coefficient matrices having the C1P ex-

ploits only the fact that such coefficient matrices are totally unimodular. However,

it is known that an ILP whose coefficient matrix has the C1P can be solved even

faster by transforming it into an edge-weighted graph and solving a shortest-path

problem or a minimum-cost flow problem on this graph, depending on whether

the decision version or the optimization version of I L P

is considered (see [93] and [2, pages 304–306] for the transformation of the opti-

mization version into the flow problem and [2, pages 310–315] for the connection

between minimum-cost flow problems and shortest-path problems; see also [78,

pages 546–550]). The running time obtained in this way is O(mn) for the decision

version and O(m2 log(n) + mn log(n)2) for the optimization version; this approach

is, therefore, much faster than using Theorem 4.2, where O((n3/ ln n)L) opera-

tions [4] are needed—L is the size of the ILP and, hence, lower-bounded by mn.

We start with showing how to solve the decision version of I L

P for coefficient matrices with the C1P by reducing it to a shortest

path problem. We assume that the coefficient matrix A of the given ILP has m rows

and that the rows of A and the entries of ~b are sorted in such a way that the first

m′ ≤ m of these rows contain only entries from {0, 1} and the remaining m − m′

rows contain only entries from {0,−1}. Moreover, we assume that A has the strong

C1P, which is not a restriction since a C1-ordering for A’s columns can be found

in linear time (see Section 3). With lx(i) and rx(i) we denote the column index of

the first and the last, respectively, non-zero entry in the ith row of A. Hence, an

instance of the problem to be solved consists of an inequation system as follows.

xlx(i) + xlx(i)+1 + . . . + xrx(i) ≤ bi ∀i ∈ {1, . . . ,m′}
−xlx(i) − xlx(i)+1 − . . . − xrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . ,m}

x j ∈ Z ∀ j ∈ {1, . . . , n}
(2)

To transform the inequation system into a graph, we first drop the constraint

of integrality and replace the n variables x1, . . . , xn by n + 1 variables y0, . . . , yn

such that x j = y j − y j−1 for all j ∈ {1, . . . , n}. This yields the following inequation

system.

−ylx(i)−1 + yrx(i) ≤ bi ∀i ∈ {1, . . . ,m′}
ylx(i)−1 − yrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . ,m}

(3)

In the resulting coefficient matrix, each row contains exactly one 1 and one −1;

hence, each row can be interpreted as a directed edge in a graph G whose ver-

tices correspond to the variables y0, . . . , yn. More precisely, let G = (V, E) be the

21

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

−y0 +y1 ≤ 3 (interpreted as edge e1)

−y1 +y2 ≤ 4 (interpreted as edge e2)

−y2 +y3 ≤ 7 (interpreted as edge e3)

y0 −y3 ≤ 8 (interpreted as edge e4)

y0 −y2 ≤ −9 (interpreted as edge e5)

v0 v1

v2v3

e1

e2

e3

e4
e5

3

4

7

8
−9

−z1 +z4 +z5 = 0 (interpreted as flow conservation at v0)

z1 −z2 = 0 (interpreted as flow conservation at v1)

z2 −z3 −z5 = 0 (interpreted as flow conservation at v2)

z3 −z4 = 0 (interpreted as flow conservation at v3)

3z1 +4z2 +7z3 +8z4 −9z5 < 0

z1, . . . , z5 ≥ 0

Figure 11: Solving an ILP whose coefficient matrix has the C1P. Top left: An

example for the inequation system (3) obtained from an ILP with the C1P. Every

row can be interpreted as an edge in a directed, edge-weighted graph G. Top

right: The graph corresponding to the ILP. Bottom: This inequation system is not

feasible iff the the inequation system displayed at the top of the figure is feasible

(Farkas’ Lemma). The inequation system at the bottom can be interpreted as a

flow problem.

directed edge-weighted graph with

V = {v j | the inequation system (3) contains a variable y j},

E = {(v j1 , v j2) | the inequation system (3) contains an inequation

whose left side is −y j1 + y j2},

where every edge e ∈ E has a weight that is equal to the right side of the inequation

corresponding to e in the inequation system (3), see Figure 11.

Now consider the following statement known as Farkas’ Lemma (see [87]).

Lemma 4.1. Let A be an m × n matrix with entries from R, and let ~b ∈ Rm be a

vector. Then the inequation system A~y ≤ ~b has a solution ~y ∈ Rn if and only if the

inequation system ~z TA = (0n)T,~z T~b < 0,~z ≥ 0m has no solution ~z ∈ Rm.

Applying Farkas’ Lemma to the inequation system (3), the lemma says that the

inequation system is feasible iff G contains no negative cycle, that is, no directed

cycle in which the sum of the edge weights is negative. To see this, observe

that by interpreting the edge weights bi as “per-flow-costs”, the inequation system

~z TA = (0n)T,~z T~b < 0,~z ≥ 0m in Farkas’ Lemma can be interpreted as the following

“negative-cost” flow problem on the graph G: Find a flow function f : E → R

such that

22

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

• the flow f (ei) along every directed edge ei ∈ E is nonnegative (expressed by

the constraint ~z ≥ 0m),

• for every vertex the sum of the ingoing and the outgoing flow is 0 (expressed

by the constraint ~z TA = (0n)T), and

• the sum
∑m

i=1 bi f (ei) of all costs arising from sending flow along the edges

is negative (expressed by the constraint ~z T~b < 0).

See Figure 11. If a flow f has these three properties, then setting zi = f (ei)

clearly yields a feasible solution for the LP. Obviously, a flow with negative cost

can only exist if the graph G contains a negative cycle. By using the Bellmann-

Ford-Moore-Algorithm (see [22]), it can be decided in O(|V | · |E|) time whether G

contains a negative cycle. Hence, the decision version of I L P-

 with C1P can be decided in O(n · m) time.

If G contains no negative cycle and a solution for the inequation system (3)

shall be constructed (that is, the values of the y j shall be computed), then just

select an arbitrary k ∈ {0, . . . , n} and set yk to 0. For every j ∈ {0, . . . , n} \ {k}
for which there exists no directed path from vk to v j in G, add an edge (vk, v j) of

weight |E| ·max{−bi | i ∈ {1, . . . ,m} ∧ bi < 0}. Note that this operation does not

create any negative cycles; note also that in the resulting graph G′ every vertex is

reachable from vk on a directed path. Now, for every j ∈ {0, . . . , n} \ {k}, set y j to

the length of the shortest path in G′ from vk to v j. Since G′ contains no negative

cycle, these shortest paths are all well-defined. It is easy to see that this solution

satisfies all inequations of the inequation system (3). The shortest paths can be

computed by the Bellmann-Ford-Moore-Algorithm in O(|V | · |E|) = O(n ·m) time.

A solution for the original ILP (2) can be computed by setting x j = y j − y j−1 for

all j ∈ {1, . . . , n}.
For solving the optimization version of the problem, one has to use a

minimum-cost flow algorithm instead of a shortest path algorithm. Again, start

with omitting the integrality constraint and replacing the variables x1, . . . , xn by

variables y0, . . . , yn. The dual of the resulting LP can now be interpreted as a

minimum-cost flow problem on a directed, vertex-weighted and edge-weighted

graph, which is constructed in analogy to the graph used for solving the de-

cision problem, and in which every vertex has a (positive or negative) “flow

demand”. Computing a minimum-cost flow which respects the flow demands

yields an optimal solution for the ILP. Such a minimum-cost flow can be found in

O(m2 log(n) + mn log(n)2) time [2].

4.1.4 ILPs with Coefficient Matrices having the Circ1P

Not all matrices that have the Circ1P are totally unimodular. For example, all ma-

trices MIk
(see Figure 7) with even k are totally unimodular, while all matrices MIk

23

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

with odd k are not (this can easily be seen by using the characterization of The-

orem 4.1). Nevertheless, every ILP whose coefficient matrix has the Circ1P can

be solved in polynomial time by solving a series of ILPs that all have the C1P [8]

(see also [2, page 346–347] and [55]).

To solve a given ILP

Maximize c1x1 + c2x2 + . . . + cnxn

subject to a1,1x1 + a1,2x2 + . . . + a1,nxn ≤ bi ∀i ∈ {1, . . . ,m}
x j ∈ Z ∀ j ∈ {1, . . . , n}

(4)

whose 0/±1-coefficient matrix A = (ai, j) has the Circ1P, define Lk, k ∈ Z, as the

ILP that results from appending the constraint

x1 + x2 + . . . + xn = k (5)

to the the ILP (4). It is obvious that the ILP (4) is feasible iff there is a value k

such that Lk is feasible. Moreover, if the ILP (4) is feasible, then there is a k such

that the optimal solution for Lk is an optimal solution for the ILP (4): just set k to

the sum of the xi in an optimal solution for the ILP (4). Now, any ILP Lk can be

transformed into an ILP having the C1P: Add the equation (5) to every inequation

of Lk whose coefficients are from {0,−1} and in which the non-zero coefficients

do not appear consecutively, and subtract the equation (5) from every inequation

of Lk whose coefficients are from {0, 1} and in which the non-zero coefficients

do not appear consecutively. The resulting ILP is equivalent to the ILP Lk (that

is, every feasible solution of the latter ILP is a feasible solution for Lk and vice

versa) and has the C1P—therefore, it can be solved with the approach described in

Section 4.1.3. The optimum value of k can be determined by a binary search [2, 8],

such that the number of ILPs that have to be solved is linear in the size of the given

ILP (4).

4.2 Set Cover Problems and the C1P

The C1P has attracted interest not least because it often makes hard problems easy.

Our first example substantiating this statement was I L P

in Section 4.1. As a second example, we consider the problem S C. For-

mulated as a matrix problem, S C is defined as follows.

S C

Input: A binary matrix M and a positive integer k.

Question: Is there a set C′ of at most k columns of M such that C′

contains at least one 1 from every row?6

24

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

Due to its generality, S C has practical applications in almost all disciplines

(see [22, 19, 16]); unfortunately, S C is not only NP-hard, but it allows

only for a logarithmic-factor polynomial-time approximation [34]. Moreover, S

C is W[2]-complete (that is, parameterized intractable) with respect to the

parameter k = “solution size” [30]. In the weighted version of S C, each

column of the given matrix M has a positive integral weight and one asks for a

column set C′ of weight at most k.

4.2.1 Set Cover with the C1P/Circ1P

Whereas S C in general is NP-complete, the problem becomes polynomial-

time solvable when the input matrix M has the C1P or the Circ1P. To solve such a

restricted instance of S C, formulate the problem in a straightforward way

as an ILP that has one variable for each column of M and whose coefficient matrix

is M. As described in Section 4.1, this ILP is polynomial-time solvable. More-

over, there is a well-known greedy algorithm for S C on input matrices with

the C1P: First order the columns of M such that in each row the 1s appear consec-

utively (this takes linear time, see Section 3), and then proceed from left to right as

follows: Repeatedly search for a row r with minimum rx(r), where rx(r) denotes

the index of the rightmost column having a 1 in row r. Then take column crx(r)

into the solution and delete all rows from M that have a 1 in column crx(r).

If the input matrix M has the C1P or the Circ1P, even the weighted version of

S C can be solved in polynomial time: one can either use the ILP approach

or, in case of input matrices having the C1P, use a simple dynamic programming

algorithm. The following theorem summarizes these results.

Theorem 4.3. W S C can be solved in polynomial time if the input

matrix has the C1P or the Circ1P (for rows or for columns).

A further approach for tackling S C is to use polynomial-time data

reduction rules: Such a reduction rule takes as input an instance X of a problem

and outputs in polynomial-time an instance X′ with |X′| ≤ |X| of the same problem

such that X′ is a yes-instance iff X is a yes-instance.

The following data reduction rules for S C are well-known; their cor-

rectness is obvious.

—If M contains two rows ri1 , ri2 such that for each column c j it holds that mi1, j = 1

implies mi2, j = 1, then remove row ri2 from M.

—If M contains two columns c j1 , c j2 such that for each row ri it holds that mi, j1 = 1

implies mi, j2 = 1, then remove column c j1 from M.

6The reader may be familiar with S C as a subset selection problem; however, the equiv-

alence of our definition and the more common definition of S C as a subset problem can

easily be seen by identifying columns with subsets and rows with elements to be covered.

25

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

—If M contains a column c j without any 1-entry, then remove column c j from M.

—If M contains a row ri that contains exactly one 1-entry mi, j, then remove ri and

all rows ri′ with mi′, j = 1 from M, remove column c j from M, and decrease k by

one.

—If k ≥ 0 and M has no rows, then answer “M is a yes-instance.”

—If M contains a row without any 1-entry, or if k < 0, or if k = 0 and M contains

at least one row, then answer “M is a no-instance.”

For S C without restrictions, these rules can be used in a preprocessing

step in order to decrease the size of a problem instance before solving it. However,

since there are S C instances to which none of the rules applies, it is not

possible to give any guarantee on the size of the problem instance resulting from

the preprocessing step. If, however, the input matrix M has the C1P (for rows

or for columns), then the instance can be solved by iteratively applying the rules,

that is, eventually one of the rules will output “M is a yes-instance” or “M is a

no-instance.”

The C1P does not only help in the case of SC, but even for more general

problems: R-B S C [17] and M-D H [33] are

generalizations of S C; when restricted to instances that have the C1P, they

become polynomial-time solvable [27].

4.2.2 Set Cover with almost C1P

In some applications, the arising S C instances do not have the C1P, but

are “close to the C1P”. Motivated by problems arising from railway optimization,

Mecke and Wagner [76], Ruf and Schöbel [86], and Mecke et al. [75] consider

W S C on input matrices that have “almost C1P”, which basically

means that either the input matrices have been generated by starting with a matrix

that has the C1P and replacing randomly a certain percentage of the 1’s by 0’s [76],

that the average number of blocks of 1’s per row is much smaller than the number

of columns of the matrix [86], or that the maximum number of blocks of 1’s

per row is small [75]. The latter restriction was also considered by Dom and

Sikdar [29] and Dom et al. [25]; here, the problem is interpreted as a a geometric

covering problem called R S. Apart from heuristics performing

well in practice [76, 86], the following results have been obtained.

Theorem 4.4 ([25, 42, 75, 76]). 1. S C is NP-complete even if the input

matrix M can be split into two submatrices M1,M2 such that M = (M1 | M2)

and both M1 and M2 have the strong C1P [42, 75]. Moreover, this restricted

variant of S C is W[1]-complete with respect to the parameter k [25].

2. W S C restricted to input matrices with at most d blocks of 1s

per row can be approximated in polynomial time with a factor d [75].

26

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

3. W S C can be solved in 2` · poly(m, n) time with ` denoting the

maximum distance between the topmost and the bottommost 1 in any column

of M [75, 76].

5 Concluding Remarks

In summary, the C1P can be recognized in linear time and many in general NP-

hard problems become polynomial-time solvable when restricted to inputs that

have the C1P. In particular, I L P and several variants

of S C are polynomial-time solvable if the input has the C1P. In contrast,

the recognition of matrices that are “close” to the C1P (for example, matrices

whose columns can be permuted such that there are two blocks of 1s per row or

matrices that can obtain the C1P by few column or row deletions) is typically NP-

hard; moreover, NP-hard problems, such as I L P and S

C, tend to stay NP-hard on inputs being “close” to the C1P.

References

[1] Graphclasses in ISGCI. http://wwwteo.informatik.uni-rostock.de/isgci/classes.cgi.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, 1993.

[3] E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall, A. Meyer-

Baese, and H. Zhang. Computing H/D-exchange speeds of single residues from data

of peptic fragments. In Proc. 23rd SAC, pages 1273–1277. ACM Press, 2008.

[4] K. M. Anstreicher. Linear programming in O(n3

ln n
L) operations. SIAM J. Optim.,

9(4):803–812, 1999.

[5] J. E. Atkins, E. G. Boman, and B. Hendrickson. A spectral algorithm for seriation

and the consecutive ones problem. SIAM J. Comput., 28(1):297–310, 1998.

[6] J. E. Atkins and M. Middendorf. On physical mapping and the consecutive ones

property for sparse matrices. Discrete Appl. Math., 71(1–3):23–40, 1996.

[7] J. Bang-Jensen, J. Huang, and A. Yeo. Convex-round and concave-round graphs.

SIAM J. Discrete Math., 13(2):179–193, 2000.

[8] J. J. Bartholdi, III, J. B. Orlin, and H. D. Ratliff. Cyclic scheduling via integer

programs with circular ones. Oper. Res., 28(5):1074–1085, 1980.

[9] S. Benzer. On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. USA,

45:1607–1620, 1959.

27

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[10] C. Berge. Sur certains hypergraphes généralisant les graphes bipartites. In P. Erdős,

A. Rhényi, and V. T. Sós, editors, Combinatorial Theory and its Applications I (Pro-

ceedings of the Colloquium on Combinatorial Theory and its Applications, 1969),

pages 119–133. North-Holland, 1970.

[11] C. Berge. Balanced matrices. Math. Program., 2:19–31, 1972.

[12] V. Bilò, V. Goyal, R. Ravi, and M. Singh. On the crossing spanning tree problem.

In Proc. 7th APPROX, volume 3122 of LNCS, pages 51–60. Springer, 2004.

[13] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, inter-

val graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci.,

13:335–379, 1976.

[14] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear Dio-

phantine equations. Proc. Amer. Math. Soc., 55(2):299–304, 1976.

[15] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey, volume 3 of

SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.

[16] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering problem. Ann.

Oper. Res., 98:353–371, 2000.

[17] R. D. Carr, S. Doddi, G. Konjevod, and M. V. Marathe. On the red-blue set cover

problem. In Proc. 11th SODA, pages 345–353. ACM Press, 2000.

[18] T. Christof, M. Oswald, and G. Reinelt. Consecutive ones and a betweenness prob-

lem in computational biology. In Proc. 6th IPCO, volume 1412 of LNCS, pages

213–228. Springer, 1998.

[19] N. Christofides and J. M. P. Paixão. Algorithms for large scale set covering prob-

lems. Ann. Oper. Res., 43(5):259–277, 1993.

[20] M. Conforti and G. Cornuéjols. Balanced 0,±1-matrices, bicoloring and total dual

integrality. Math. Program., 71:249–258, 1995.

[21] M. Conforti, G. Cornuéjols, and K. Vuskovic. Balanced matrices. Discrete Math.,

306(19–20):2411–2437, 2006.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2nd edition, 2001.

[23] D. G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition

algorithm? (extended abstract). In Proc. 9th SODA, pages 175–180. ACM/SIAM,

1998.

[24] M. Dom. Recognition, Generation, and Application of Binary Matrices with the

Consecutive-Ones Property. PhD thesis, Institut für Informatik, Friedrich-Schiller-

Universität Jena, Germany, 2008.

[25] M. Dom, M. R. Fellows, and F. A. Rosamond. Parameterized complexity of stabbing

rectangles and squares in the plane. In Proc. 3rd WALCOM, volume 5431 of LNCS,

pages 298–309. Springer, 2009.

28

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[26] M. Dom, J. Guo, and R. Niedermeier. Approximability and parameterized complex-

ity of consecutive ones submatrix problems. In Proc. 4th TAMC, volume 4484 of

LNCS, pages 680–691. Springer, 2007.

[27] M. Dom, J. Guo, R. Niedermeier, and S. Wernicke. Red-blue covering problems and

the consecutive ones property. J. Discrete Algorithms, 6(3):393–407, 2008.

[28] M. Dom and R. Niedermeier. The search for consecutive ones submatrices: Faster

and more general. In Proc. 3rd ACiD, volume 9 of Texts in Algorithmics, pages

43–54. College Publications, 2007.

[29] M. Dom and S. Sikdar. The parameterized complexity of the rectangle stabbing

problem and its variants. In Proc. 2nd FAW, volume 5059 of LNCS, pages 288–299.

Springer, 2008.

[30] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[31] E. M. Eschen and J. Spinrad. An O(n2) algorithm for circular-arc graph recognition.

In Proc. 4rd SODA, pages 128–137. ACM/SIAM, 1993.

[32] G. Even, R. Levi, D. Rawitz, B. Schieber, S. Shahar, and M. Sviridenko. Algorithms

for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM Trans.

Algorithms, 4(3), Article 34, 2008.

[33] T. Feder, R. Motwani, and A. Zhu. k-connected spanning subgraphs of low degree.

Technical Report TR06-041, Electronic Colloquium on Computational Complexity

(ECCC), 2006.

[34] U. Feige. A threshold of ln n for approximating Set Cover. J. ACM, 45(4):634–652,

1998.

[35] P. C. Fishburn. Interval Orders and Interval Graphs. Wiley, 1985.

[36] M. Flammini, G. Gambosi, and S. Salomone. Interval routing schemes. Algorith-

mica, 16(6):549–568, 1996.

[37] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[38] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J.

Math., 15(3):835–855, 1965.

[39] D. R. Fulkerson, A. J. Hoffman, and R. Oppenheim. On balanced matrices. Mathe-

matical Programming Study, 1:120–132, 1974.

[40] F. Gardi. The Roberts characterization of proper and unit interval graphs. Discrete

Math., 307(22):2906–2908, 2007.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[42] D. R. Gaur, T. Ibaraki, and R. Krishnamurti. Constant ratio approximation algo-

rithms for the rectangle stabbing problem and the rectilinear partitioning problem.

J. Algorithms, 43(1):138–152, 2002.

[43] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357–369, 1974.

29

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[44] A. Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. C. R.

Acad. Sci. Paris, 254:1192–1194, 1962.

[45] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against

physical mapping of DNA. J. Comput. Biol., 2(1):139–152, 1995.

[46] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of

Annals of Discrete Mathematics. Elsevier B. V., 2nd edition, 2004. First edition

Academic Press, 1980.

[47] M. Habib, R. M. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition re-

finement, with applications to transitive orientation, interval graph recognition and

consecutive ones testing. Theor. Comput. Sci., 234(1–2):59–84, 2000.

[48] S. Haddadi. A note on the NP-hardness of the consecutive block minimization prob-

lem. Int. Trans. Oper. Res., 9(6):775–777, 2002.

[49] S. Haddadi and Z. Layouni. Consecutive block minimization is 1.5-approximable.

Inf. Process. Lett., 108:132–135, 2008.

[50] M. Hajiaghayi. Consecutive ones property. Manuscript, School of Computer Sci-

ence, University of Waterloo, Canada, 2000.

[51] M. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix problem.

Inf. Process. Lett., 83(3):163–166, 2002.

[52] G. Hajös. Über eine Art von Graphen. Intern. Math. Nachr., 11, Problem 65, 1957.

In German language.

[53] R. Hassin and N. Megiddo. Approximation algorithms for hitting objects with

straight lines. Discrete Appl. Math., 30:29–42, 1991.

[54] D. S. Hochbaum and A. Levin. Cyclical scheduling and multi-shift scheduling:

Complexity and approximation algorithms. Discrete Optim., 3(4):327–340, 2006.

[55] D. S. Hochbaum and P. A. Tucker. Minimax problems with bitonic matrices. Net-

works, 40(3):113–124, 2002.

[56] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. In

H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems,

pages 223–246. Princeton University Press, 1956.

[57] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[58] W.-L. Hsu. A simple test for interval graphs. In Proc. 18th WG, volume 657 of

LNCS, pages 11–16. Springer, 1992.

[59] W.-L. Hsu. O(M ∗ N) algorithms for the recognition and isomorphism problems on

circular-arc graphs. SIAM J. Comput., 24(3):411–439, 1995.

[60] W.-L. Hsu. On physical mapping algorithms – an error-tolerant test for the consecu-

tive ones property. In Proc. 3rd COCOON, volume 1276 of LNCS, pages 242–250.

Springer, 1997.

30

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[61] W.-L. Hsu. A simple test for the consecutive ones property. J. Algorithms, 43(1):1–

16, 2002.

[62] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing chordal com-

parability graphs and interval graphs. SIAM J. Comput., 28(3):1004–1020, 1999.

[63] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements. Theor.

Comput. Sci., 296(1):99–116, 2003.

[64] R. Kannan and C. L. Monma. On the computational complexity of integer pro-

gramming problems. In R. Henn, B. Korte, and W. Oettli, editors, Optimization and

Operations Research, volume 157 of Lect. Notes Econ. Math. Syst., pages 161–172.

Springer, 1978.

[65] H. Kaplan and Y. Nussbaum. A simpler linear-time recognition of circular-arc

graphs. In Proc. 10th SWAT, volume 4059 of LNCS, pages 41–52. Springer, 2006.

[66] N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing

interval graphs. SIAM J. Comput., 18(1):68–81, 1989.

[67] L. T. Kou. Polynomial complete consecutive information retrieval problems. SIAM

J. Comput., 6(1):67–75, 1977.

[68] S. Kovaleva and F. C. R. Spieksma. Approximation of a geometric set covering

problem. In Proc. 12th ISAAC, volume 2223 of LNCS, pages 493–501. Springer,

2001.

[69] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. Spinrad. Certifying algo-

rithms for recognizing interval graphs and permutation graphs. SIAM J. Comput.,

36(2):326–353, 2006.

[70] G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs problems, com-

plexity, and algorithms. In Proc. 9th ESA, volume 2161 of LNCS, pages 182–193.

Springer, 2001.

[71] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of

intervals on the real line. Fund. Math., 51:45–64, 1962.

[72] W.-F. Lu and W.-L. Hsu. A test for the consecutive ones property on noisy data – ap-

plication to physical mapping and sequence assembly. J. Comput. Biol., 10(5):709–

735, 2003.

[73] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,

37(2):93–147, 2003.

[74] R. M. McConnell. A certifying algorithm for the consecutive-ones property. In Proc.

15th SODA, pages 768–777. ACM Press, 2004.

[75] S. Mecke, A. Schöbel, and D. Wagner. Station location – complexity and approxi-

mation. In Proc. 5th ATMOS. IBFI Dagstuhl, Germany, 2005.

[76] S. Mecke and D. Wagner. Solving geometric covering problems by data reduction.

In Proc. 12th ESA, volume 3221 of LNCS, pages 760–771. Springer, 2004.

31

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[77] J. Meidanis, O. Porto, and G. P. Telles. On the consecutive ones property. Discrete

Appl. Math., 88:325–354, 1998.

[78] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Dis-

crete Mathematics and Optimization. Wiley, 1988.

[79] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,

2006.

[80] M. Oswald and G. Reinelt. Polyhedral aspects of the consecutive ones problem. In

Proc. 6th COCOON, volume 1858 of LNCS, pages 373–382. Springer, 2000.

[81] M. Oswald and G. Reinelt. Constructing new facets of the consecutive ones poly-

tope. In Proc. 5th Intern. Workshop on Combinatorial Optimization—“Eureka, You

Shrink!”, volume 2570 of LNCS, pages 147–157, 2003.

[82] M. Oswald and G. Reinelt. The weighted consecutive ones problem for a fixed

number of rows or columns. Oper. Res. Lett., 31(3):350–356, 2003.

[83] M. Oswald and G. Reinelt. The simultaneous consecutive ones problem. Theor.

Comput. Sci., 410(21–23):1986–1992, 2009.

[84] F. A. Potra and S. J. Wright. Interior-point methods. J. Comput. Appl. Math.,

124:281–302, 2000.

[85] F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph

Theory, pages 139–146. Academic Press, 1969.

[86] N. Ruf and A. Schöbel. Set covering with almost consecutive ones property. Discrete

Optim., 1(2):215–228, 2004.

[87] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[88] J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse matrices.

Algorithmica, 48(3):287–299, 2007.

[89] K. Truemper. On balanced matrices and Tutte’s characterization of regular matroids.

Manuscript, 1978.

[90] A. C. Tucker. Matrix characterizations of circular-arc graphs. Pacific J. Math.,

2(39):535–545, 1971.

[91] A. C. Tucker. A structure theorem for the consecutive 1’s property. J. Combin.

Theory Ser. B, 12:153–162, 1972.

[92] A. C. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput., 9(1):1–24,

1980.

[93] A. F. Veinott and H. M. Wagner. Optimal capacity scheduling. Oper. Res., 10:518–

547, 1962.

[94] M. Veldhorst. Approximation of the consecutive ones matrix augmentation problem.

SIAM J. Comput., 14(3):709–729, 1985.

[95] J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer equations

and inequalities. Proc. Amer. Math. Soc., 72:155–158, 1978.

32

Originally published in Bulletin of the European Association for Theoretical Computer Science, 98:27–59. EATCS, 2009.

[96] R. Wang, F. C. M. Lau, and Y. Zhao. Hamiltonicity of regular graphs and blocks of

consecutive ones in symmetric matrices. Discrete Appl. Math., 155(17):2312–2320,

2007.

[97] S. Weis and R. Reischuk. The complexity of physical mapping with strict chimerism.

In Proc. 6th COCOON, volume 1858 of LNCS, pages 383–395. Springer, 2000.

33

	Introduction
	Preliminaries
	The Consecutive-Ones Property

	Graph Classes and the C1P/Circ1P
	Recognizing the C1P
	Hard Problems on Instances with the C1P/Circ1P
	Integer Linear Programming and the C1P/Circ1P
	(Integer) Linear Programming Basics
	Totally Unimodular Matrices
	ILPs with Coefficient Matrices having the C1P
	ILPs with Coefficient Matrices having the Circ1P

	Set Cover Problems and the C1P
	Set Cover with the C1P/Circ1P
	Set Cover with almost C1P

	Concluding Remarks

