The Search for Consecutive Ones Submatrices: Faster and More General

Michael Dom and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
Algorithms and Complexity in Durham 2007

Consecutive Ones Property (C1P)

A 0/1-matrix has the C1P if its columns can be permuted such that in each row the 1 's form a block.

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:

Consecutive Ones Property (C1P)

Examples for matrices not having the C1P:

1	1	0
0	1	1
1	0	1

1	1	0	0
0	1	1	0
0	0	1	1
1	0	0	1

1	1	0	0	0
0	1	1	0	0
0	0	1	1	0
0	0	0	1	1
1	0	0	0	1

1	1	0	0
0	1	1	0
0	1	0	1

1	1	0	0	0	0
0	0	1	1	0	0
0	0	0	0	1	1
1	0	1	0	1	0

Consecutive Ones Property (C1P)

The Consecutive Ones Property. . .

- ...expresses "locality" of the input data.
- ...appears in many applications, e.g.
- in railway system optimization
[Ruf, Schöbel, Discrete Optimization, 2004;
Mecke, Wagner, ESA '04],
- bioinformatics
[Christof, Oswald, Reinelt, IPCO '98;
Lu, Hsu, J. Comp. Biology, 2003].
- ... can be recognized in polynomial time [Booth, Lueker, J. Comput. System Sci., 1976; Meidanis, Porto, Telles, Discrete Appl. Math., 1998; Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000, Hsu, J. Algorithms, 2002; McConnell, SODA '04].
- . . . is subject of current research [Hajiaghayi, Ganjali, Inf. Process. Lett., 2002;
Tan, Zhang, Algorithmica, 2007].

Problem Definition

Min-COS-C (Min-COS-R)

Given: A matrix M and a positive integer k.
Question: Can we delete at most k columns (at most k rows) such that the resulting matrix has the C1P?

Known and New Results

Min-COS-C:

- NP-hard for $(2,3)$ - and $(3,2)$-matrices ${ }^{1}$
- Approximation algorithms for maximization version on $(2,3)$-, $(3,2)$-, and $(2, *)$-matrices ${ }^{1}$
- FPT and approximation results for $(*, 2)-,(2, *)$ - and $(*, \Delta)$-matrices ${ }^{2}$

Min-COS-R:

- NP-hard for $(3,2)$-matrices ${ }^{3}$

[^0]
Known and New Results

Min-COS-C:

- NP-hard for $(2,3)$ - and $(3,2)$-matrices ${ }^{1}$
- Approximation algorithms for maximization version on $(2,3)$-, $(3,2)$-, and $(2, *)$-matrices ${ }^{1}$
- FPT and approximation results for $(*, 2)-,(2, *)$ - and $(*, \Delta)$-matrices ${ }^{2}$
- Improved results for $(*, \Delta)$-matrices (FPT w.r.t (k, Δ))

Min-COS-R:

- NP-hard for $(3,2)$-matrices ${ }^{3}$
- FPT and approximation results for $(*, \Delta)$-matrices

[^1]
Structure of What Follows

- Algorithmic Framework
- From Circ1P to C1P

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
& \\
&
\end{aligned}
$$

Theorem: A matrix has the C1P iff it contains none of the shown matrices.
[Tucker, Journal of Combinatorial Theory (B), 1972]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
& \overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & 0 \\
0 & \ldots & \cdots & \mathbf{1} & \mathbf{1} & 0 \\
\hline 0 & \mathbf{1} & & \cdots & & \mathbf{1} \\
\mathbf{1} & & \ldots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}\} p+3 \\
& \overbrace{\begin{array}{|ccccc|c}
\left\lvert\, \begin{array}{cccccc}
\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \cdots & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & \cdots & \mathbf{1} & 0 & \mathbf{1}
\end{array}\right. \\
M_{\mathrm{III}_{p},}, p \geq 1
\end{array}}^{p+3}\} p+2 \\
& \\
& \begin{array}{ll}
\hline \begin{array}{lllll}
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
\hline
\end{array} M_{\mathrm{V}}
\end{array}
\end{aligned}
$$

Approach: Use a search tree algorithm.
Repeat:

1. Search for a "forbidden submatrix".
2. Branch on which of its columns has to be deleted.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Search Tree Algorithm:

Finite size c of forbidden matrices \Rightarrow search tree of size $O\left(c^{k}\right)$. (Alternatively: Factor-c approximation algorithm.)

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
&
\end{aligned}
$$

A $(*, \Delta)$-matrix can contain

- $M_{l_{p}}$ with unbounded size,
- $M_{\mathrm{II}_{p}}$ with $1 \leq p \leq \Delta-2$,
- $M_{\text {III }_{p}}$ with $1 \leq p \leq \Delta-1$,
- MIV , and M_{V}.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur.
Idea: First destroy all "small" forbidden submatrices (search tree algorithm), and then see what happens...

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

Theorem: If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be partitioned into "independent" submatrices that have the "circular ones property (Circ1P)".
[Dom, Guo, Niedermeier, TAMC '07]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

FPT algorithm:

Running time:

| | $(\mid \text { submatrix } \mid)^{k}$ | $\cdot($ search | + "Circ1P \rightarrow C1P" time) |
| :--- | :--- | :--- | :--- | :--- |
| Old $^{4}:(\Delta+2)^{k}$ | $\cdot\left(n^{O(\Delta)}\right.$ | $\left.+n^{O(\Delta)}\right)$ | (only Min-COS-C) |
| New: $(\Delta+2)^{k}$ | $\cdot\left(n^{O(1)}\right.$ | $+O(\Delta m n))$ | |

Approximation algorithm:
Approximation factor: |submatrix|
Running time:
$k \cdot($ search + "Circ1P \rightarrow C1P" time $)$

[^2]
Structure of the Talk

- Algorithmic Framework
- From Circ1P to C1P

From Circ1P to C1P

Again:
Theorem: If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be partitioned into "independent" submatrices that have the "circular ones property (Circ1P)".
[Dom, Guo, Niedermeier, TAMC '07]

"Independent" Submatrices

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0
r_{2}	0	$\mathbf{1}$	0	0	0	0
r_{3}	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0
r_{4}	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$

The Circular Ones Property (Circ1P)

A 0/1-matrix M has the Circ1P if its columns can be permuted such that in each row the 1's form a block when M is wrapped around a vertical cylinder.

From Circ1P to C1P

C1P:	1's blockwise after column permutations
Circ1P:	1's blockwise on a cylinder
	after column permutations

(Circ1P/C1P means: Strong Circ1P/strong C1P can be obtained by column permutations.)

From Circ1P to C1P

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

From Circ1P to C1P

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

Strong C1P =
Strong Circ1P + "cut"

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + column deletions

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + Colum deletions

First consider this task:

strong Circ1P	column deletions	strong Circ1P + strong C1P

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + C1P

First consider this task:

strong Circ1P	column deletions	strong Circ1P + strong C1P

Obs.: Deleting a consecutive set of columns is always optimal.

From Circ1P to C1P

Our task:

strong Circ1P	column deletions	$\begin{gathered} \text { strong Circ1P }+ \\ \text { C1P } \end{gathered}$

Easy task:

strong Circ1P	column deletions	strong Circ1P + strong C1P

We hope: Does "strong Circ1P + C1P" imply "strong C1P"?

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

New conjecture: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P + C1P

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P+ strong C1P

strong Circ1P + C1P

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P +C 1 P

From Circ1P to C1P

Now to be proven: Let M be a matrix with with $\geq 2 \Delta-1$ columns that has the strong Circ1P and the strong C1P. Reversing an arbitrary circular module of M does not affect these properties.

From Circ1P to C1P

Algorithm for Min-COS-C on matrices with Circ1P:

1. Permute the columns to get the strong Circ1P.
2. Search for a set of consecutive consecutive columns whose deletion yields the strong C1P.

Main Open Question

How can a matrix that has the (strong) Circ1P be modified by deleting a minimum number of 1 -entries such that the resulting matrix has the C1P?

[^0]: ${ }^{1}$ [Tan, Zhang, ISAAC '04]
 ${ }^{2}$ [Dom, Guo, Niedermeier, TAMC '07]
 ${ }^{3}$ [Garey, Johnson, 1979; Hajiaghayi, Ganjali, Inf. Process. Lett., 2002]

[^1]: ${ }^{1}$ [Tan, Zhang, ISAAC '04]
 ${ }^{2}$ [Dom, Guo, Niedermeier, TAMC '07]
 ${ }^{3}$ [Garey, Johnson, 1979; Hajiaghayi, Ganjali, Inf. Process. Lett., 2002]

[^2]: ${ }^{4}$ [Dom, Guo, Niedermeier, TAMC '07]

