Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments

Michael Dom,

Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

▶ The FEEDBACK VERTEX SET Problem in Tournaments

(ロ)、(型)、(E)、(E)、 E、 の(の)

- An Iterative Compression Algorithm
- Further Results

The Problem FEEDBACK VERTEX SET

Definition (FEEDBACK VERTEX SET (FVS))

Input: Directed graph G = (V, E), integer $k \ge 0$.

Output: Is there a subset $X \subseteq V$ of at most k vertices such that $G[V \setminus X]$ has no cycles?

The Problem FEEDBACK VERTEX SET

Definition (FEEDBACK VERTEX SET (FVS))

Input: Directed graph G = (V, E), integer $k \ge 0$.

Output: Is there a subset $X \subseteq V$ of at most k vertices such that $G[V \setminus X]$ has no cycles?

The Problem FEEDBACK VERTEX SET

Definition (FEEDBACK VERTEX SET (FVS))

Input: Directed graph G = (V, E), integer $k \ge 0$.

Output: Is there a subset $X \subseteq V$ of at most k vertices such that $G[V \setminus X]$ has no cycles?

Complexity of FEEDBACK VERTEX SET

 $\ensuremath{\operatorname{Feedback}}$ Vertex Set is NP-complete on:

Directed graphs

[Karp, 1972]

- Planar directed graphs
 [Yannakakis, STOC 1978]
- Directed graphs with in-/outdegree ≤ 2 [Garey and Johnson, Computers and Intractability, 1979]
- Planar directed graphs with in-/outdegree ≤ 3 [Garey and Johnson, Computers and Intractability, 1979]

Tournaments

[Speckenmeyer, WG 1989]

Tournaments

For each pair u, v of vertices, there is exactly one of the edges (u, v) and (v, u).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Approximability of FEEDBACK VERTEX SET

► FEEDBACK VERTEX SET is APX-hard on directed graphs. [Kann, PhD thesis, 1992]

Known approximation ratios:

Undirected graphs	2 [Bafna et al., SIAM J. Disc. Math., 1999]
Digraphs	$O(\log n \log \log n)$ [Even et al., Algorithmica, 1998]
Planar digraphs	2.25 [Goemans and Williamson, IPCO 1996]
Tournaments	2.5 [Cai et al., SIAM J. Comput., 2001]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Lower bound for FVS in tournaments: 1.36 unless P = NP. [Speckenmeyer, WG 1989, Dinur and Safra, Ann. of Math., 2005]

Fixed-Parameter Tractability (1)

A problem (G, k) is fixed-parameter tractable (FPT) \Leftrightarrow (G, k) is solvable in time $f(k) \cdot n^{O(1)}$.

Is FEEDBACK VERTEX SET with parameter "solution size" FPT?

- Undirected graphs: Yes. [Bodlaender, Internat. J. Found. Comput. Sci., 1994; Downey and Fellows, Congressus Numerantium, 1992]
- Directed graphs: Open problem.
- Tournaments: Yes.

[Raman and Saurabh, Theoret. Comput. Sci., 2006]

Fixed-Parameter Tractability (2)

Lemma

A tournament contains a cycle iff it contains a triangle.

 \Rightarrow Reformulation of the task: Destroy all triangles.

⇒ FEEDBACK VERTEX SET in tournaments can be reduced to 3-HITTING SET, which can be solved in time $O(2.18^k \cdot n^{O(1)})$ [Fernau, ECCC, 2004].

Our algorithm: Running time $O(2^k \cdot n^{O(1)})$.

Iterative Compression

"Compression routine": Given a solution of size k + 1, compute a solution of size k. [Reed, Smith, and Vetta, Oper. Res. Lett., 2004]

Iterative Compression framework for FEEDBACK VERTEX SET:

1 Start with an empty graph G and an empty solution X. 2 Repeat n times: 3 Add a vertex v to G and to X. 4 Try to compress X. 5 If |X| > k, answer ''no''.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Invariant during the loop: X is a solution of size at most k for the current graph G.

Compression Routine (1)

Task:

Given a solution X of size k + 1, compute a solution X' of size k.

Approach:

Try all 2^{k+1} partitions of X into two subsets S and $X \setminus S$.

Compression Routine (1)

Task:

Given a solution X of size k + 1, compute a solution X' of size k.

Approach:

Try all 2^{k+1} partitions of X into two subsets S and $X \setminus S$.

Compression Routine (1)

Task:

Given a solution X of size k + 1, compute a solution X' of size k.

Approach:

Try all 2^{k+1} partitions of X into two subsets S and $X \setminus S$.

Compression Routine (2)

Vertices from $X \setminus S$ can be deleted immediately.

Compression Routine (2)

Vertices from $X \setminus S$ can be deleted immediately.

⇒ New task: Given a graph G = (V, E) and a solution S of size k + 1, compute a minimum solution F with $F \cap S = \emptyset$.

Compression Routine (3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Observations:

Compression Routine (3)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Observations:

- $G[V \setminus S]$ is acyclic.
- ▶ *G*[*S*] must be acyclic.

Compression Routine (3)

Observations:

- $G[V \setminus S]$ is acyclic.
- ▶ *G*[*S*] must be acyclic.
- ► All triangles with exactly one vertex in V \ S can easily be destroyed.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Topological Sorts

- G[S] is acyclic \Rightarrow S has topological sort $s_1, \ldots, s_{|S|}$.
- $G[V \setminus S]$ is acyclic \Rightarrow $V \setminus S$ has topological sort.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Topological Sorts

- G[S] is acyclic ⇒
 S has topological sort s₁,..., s_{|S|}.
 G[V \ S] is acyclic ⇒
 - $V \setminus S$ has topological sort.

Goal: Insert a maximum subset of $V \setminus S$ into $s_1, \ldots, s_{|S|}$. Observation: Every vertex v of $V \setminus S$ has a "natural position" p(v) relative to the vertices of S.

The "Natural Position" p(v)

Definition of p(v): For all $s_i \in S$ with i < p(v): edge from s_i to v. For all $s_i \in S$ with $i \ge p(v)$: edge from v to s_i .

The value p(v) is defined and unique for every $v \in V \setminus S$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

The "Natural Position" p(v)

Definition of p(v): For all $s_i \in S$ with i < p(v): edge from s_i to v. For all $s_i \in S$ with $i \ge p(v)$: edge from v to s_i .

The value p(v) is defined and unique for every $v \in V \setminus S$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- the topological sort of $V \setminus S$ is preserved, and
- the sort of $V \setminus S$ by "natural position" p is preserved.

- the topological sort of $V \setminus S$ is preserved, and
- the sort of $V \setminus S$ by "natural position" p is preserved.

- the topological sort of $V \setminus S$ is preserved, and
- the sort of $V \setminus S$ by "natural position" p is preserved.

- ▶ the topological sort of $V \setminus S$ is preserved, and
- the sort of $V \setminus S$ by "natural position" p is preserved.
- \Rightarrow Search for the longest common subsequence of both sorts.

Example

- $V \setminus S$ sorted topologically: $v_1v_2v_3v_4v_5v_6$
- $V \setminus S$ sorted by $p: v_2v_1v_4v_3v_6v_5$
- A longest common subsequence is $v_1 v_3 v_5$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

- $V \setminus S$ sorted topologically: $v_1v_2v_3v_4v_5v_6$
- $V \setminus S$ sorted by $p: v_2v_1v_4v_3v_6v_5$
- A longest common subsequence is $v_1 v_3 v_5$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

- $V \setminus S$ sorted topologically: $v_1 v_2 v_3 v_4 v_5 v_6$
- $V \setminus S$ sorted by $p: v_2v_1v_4v_3v_6v_5$
- A longest common subsequence is $v_1 v_3 v_5$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Overall Running Time

Time consumption:

- n iterations of the compression routine;
- ▶ 2^{*k*+1} partitions per iteration;
- ► time O(n · k) for destroying triangles, time O(n log n) for sorting vertices and finding the longest common subsequence.

Running time for solving FEEDBACK VERTEX SET in tournaments:

 $O(2^k \cdot n^2(\log n + k))$

Further Results

- ► Fixed-parameter search tree algorithm for FEEDBACK VERTEX SET in bipartite tournaments.
- ▶ Problem kernel for FEEDBACK VERTEX SET in tournaments.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

▶ Problem kernel for FEEDBACK ARC SET in tournaments.

Outlook

- The parameterized complexity of FEEDBACK VERTEX SET on directed graphs is a currently open problem.
- Feedback set problems in bipartite tournaments are not well explored:

- ▶ Problem kernel for FEEDBACK VERTEX SET.
- Complexity of FEEDBACK ARC SET.
- ▶ Problem kernel for FEEDBACK ARC SET.
- Implementation of our algorithm, experiments.