Bounded Degree Closest *k*-Tree Power is NP-Complete

Michael Dom, Jiong Guo, and Rolf Niedermeier

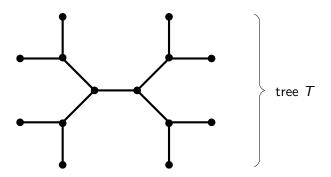
Friedrich-Schiller-Universität Jena, Germany

Structure of the Talk

Introduction: Tree power and tree root problems

► A reduction from 3-VERTEX COVER to CLOSEST *k*-TREE POWER WITH BOUNDED DEGREE

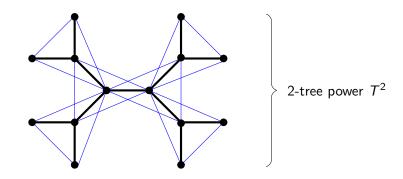
Example: A tree network consisting of 14 processors. Passing information from one processor to the next requires one timestep.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

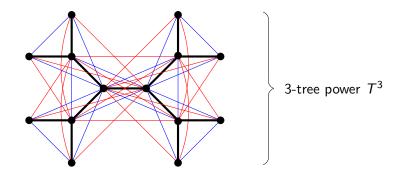
Black edges: Communication possible in one timestep

Example: A tree network consisting of 14 processors. Passing information from one processor to the next requires one timestep.

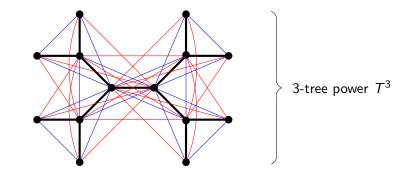


Black edges: Communication possible in one timestep Blue edges: Communication possible in two timesteps

Example: A tree network consisting of 14 processors. Passing information from one processor to the next requires one timestep.



Black edges:Communication possible in one timestepBlue edges:Communication possible in two timestepsRed edges:Communication possible in three timesteps



Definition

A graph $G = (V, E_G)$ is a *k*-tree power if there is a tree $T = (V, E_T)$ with

$$\forall u, v \in V : \mathsf{dist}_T \leq k \Leftrightarrow (u, v) \in E_G.$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

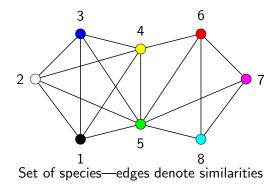
T is called the *k*-tree root of G.

Tree power recognition / Computing tree roots

Example: Constructing phylogenies.

Given: A graph with node set *V*—denoting biological

species—and an edge set denoting similarities between the species. **Question:** Is there a tree with node set V in which two nodes u, v have distance at most k iff they are connected in the given graph?

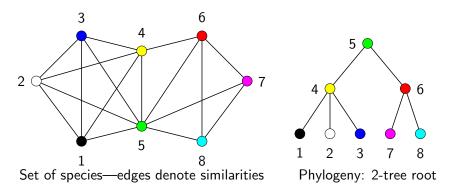


Tree power recognition / Computing tree roots

Example: Constructing phylogenies.

Given: A graph with node set V—denoting biological

species—and an edge set denoting similarities between the species. **Question:** Is there a tree with node set V in which two nodes u, v have distance at most k iff they are connected in the given graph?



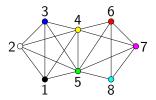
Tree power recognition / Computing tree roots

k-TREE POWER **Instance:** A graph *G*. **Question:** Is there a tree *T* with $T^k = G$?

- Solvable in linear time for k = 2
 [Y. L. Lin, S. S. Skiena, SIAM Journal on Discrete Mathematics, 1995]
- ▶ Solvable in polynomial time for every k ≥ 3
 [P. E. Kearney, D. G. Corneil, *Journal of Algorithms*, 1998]
- ► NP-complete for every k ≥ 2 if T may be an arbitrary graph (GRAPH POWER problem)

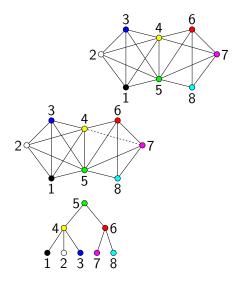
[R. Motwani, M. Sudan, Discrete Applied Mathematics, 1994]

What to do if a given graph has no k-tree root?



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

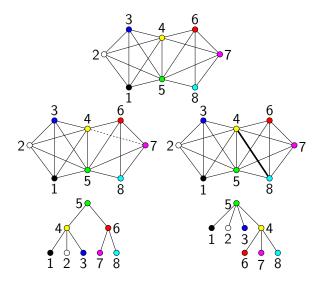
What to do if a given graph has no k-tree root?



- 20

< □ > < □ > < □ > < □ > < □ > < □ >

What to do if a given graph has no k-tree root?



CLOSEST *k*-TREE POWER (CTP*k*) **Instance:** A graph *G*. **Question:** Is there a *k*-tree power T^k such that T^k and *G* differ by at most ℓ edges: $|(E(T^k) \setminus E(G)) \cup (E(G) \setminus E(T^k))| \leq \ell$?

▶ NP-complete for every k ≥ 2
 [P. E. Kearney, D. G. Corneil, Journal of Algorithms, 1998]

CLOSEST *k*-TREE POWER WITH BOUNDED DEGREE $(\Delta$ -CTP*k*) The maximum vertex degree of *T* is at most Δ .

Complexity open so far for every k, Δ ≥ 2. Open question at COCOON 2004! [T. Tsukiji, Z.-Z. Chen, Proc. 10th COCOON, 2004]

Structure of the Talk

- Introduction: Tree power and tree root problems
- A reduction from 3-Vertex Cover to Closest k-Tree Power with Bounded Degree

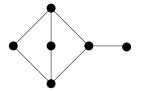
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Idea of the reduction

We reduce the NP-complete [M. R. Garey, D. S. Johnson, L. J. Stockmeyer, *Theoretical Computer Science*, 1976] problem 3-VERTEX COVER to Δ -CTPk with $\Delta \geq 4$.

3-VERTEX COVER **Input:** A graph G = (V, E) with a maximum vertex degree 3 and a nonnegative integer ℓ . **Question:** Is there a set $C \subseteq V$ of at most ℓ vertices such that

each edge from E has at least one endpoint in C?

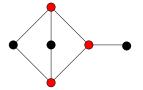


Idea of the reduction

We reduce the NP-complete [M. R. Garey, D. S. Johnson, L. J. Stockmeyer, *Theoretical Computer Science*, 1976] problem 3-VERTEX COVER to Δ -CTPk with $\Delta \geq 4$.

3-VERTEX COVER **Input:** A graph G = (V, E) with a maximum vertex degree 3 and a nonnegative integer ℓ . **Question:** Is there a set $C \subseteq V$ of at most ℓ vertices such that

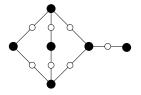
each edge from E has at least one endpoint in C?



"Edge modification version" of 3-VERTEX COVER

Reformulation of 3-VERTEX COVER:

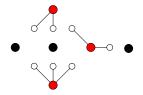
- We insert an additional node in the middle of each edge.
- The question now is: Delete edges such that
 - 1. each "additional" node is adjacent to exactly one "original" vertex, and
 - 2. the number of "original" vertices having degree at least one is minimized.



"Edge modification version" of 3-VERTEX COVER

Reformulation of 3-VERTEX COVER:

- We insert an additional node in the middle of each edge.
- The question now is: Delete edges such that
 - 1. each "additional" node is adjacent to exactly one "original" vertex, and
 - 2. the number of "original" vertices having degree at least one is minimized.



▶ We need |E| edge deletions to transform each "additional" node into a degree-1-node—independent of the number of red vertices.

▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー のくぐ

- ▶ We need |E| edge deletions to transform each "additional" node into a degree-1-node—independent of the number of red vertices.
- Δ-CTPk minimizes only the number of modified edges, but not the number of red vertices.

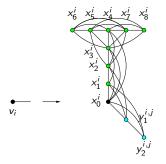
< D > < 同 > < E > < E > < E > < 0 < 0</p>

- ▶ We need |E| edge deletions to transform each "additional" node into a degree-1-node—independent of the number of red vertices.
- Δ-CTPk minimizes only the number of modified edges, but not the number of red vertices.
- ► ⇒ Replace the "original" vertices of the 3-VERTEX COVER instance by gadgets such that for each red vertex further edge modifications are necessary.

- ▶ We need |E| edge deletions to transform each "additional" node into a degree-1-node—independent of the number of red vertices.
- Δ-CTPk minimizes only the number of modified edges, but not the number of red vertices.
- ► ⇒ Replace the "original" vertices of the 3-VERTEX COVER instance by gadgets such that for each red vertex further edge modifications are necessary.
- Replace the edges of the 3-VERTEX COVER instance (and the "additional" nodes) by gadgets.

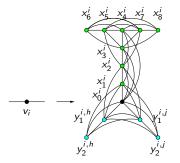
Construction of a vertex gadget (case k = 3)

For each "original" vertex $v_i \in V$, i = 1, ..., n of the 3-VERTEX COVER instance G = (V, E) we insert into the Δ -CTPk instance G_{CTP} a vertex gadget:



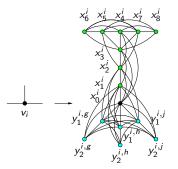
Construction of a vertex gadget (case k = 3)

For each "original" vertex $v_i \in V$, i = 1, ..., n of the 3-VERTEX COVER instance G = (V, E) we insert into the Δ -CTPk instance G_{CTP} a vertex gadget:



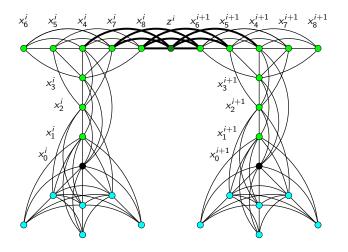
Construction of a vertex gadget (case k = 3)

For each "original" vertex $v_i \in V$, i = 1, ..., n of the 3-VERTEX COVER instance G = (V, E) we insert into the Δ -CTPk instance G_{CTP} a vertex gadget:



Making G_{CTP} a connected component (case k = 3)

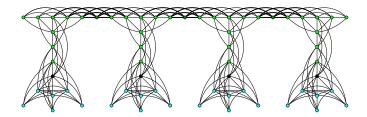
To guarantee that G_{CTP} is connected we add n-1 connecting nodes z^i, \ldots, z^{n-1} , and for all $1 \le i < n$ we connect the gadgets of v_1 and v_{i+1} :



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Making G_{CTP} a connected component (case k = 3)

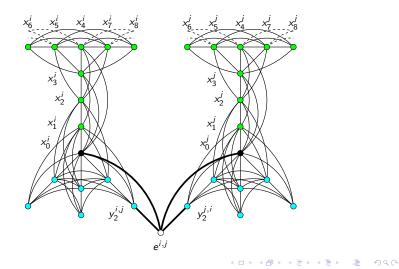
To guarantee that G_{CTP} is connected we add n-1 connecting nodes z^i, \ldots, z^{n-1} , and for all $1 \le i < n$ we connect the gadgets of v_1 and v_{i+1} :

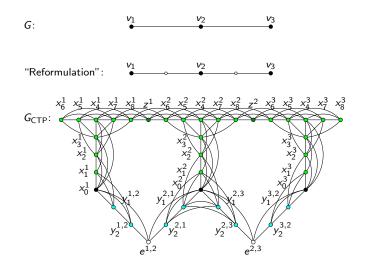


・ロット 小型 マイリット 小田 マ

Construction of an edge gadget (case k = 3)

For each edge (v_i, v_j) of the 3-VERTEX COVER instance G = (V, E) we insert into the Δ -CTPk instance G_{CTP} an *edge gadget* consisting of an *edge node* e^{ij} and four edges:

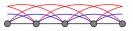




◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

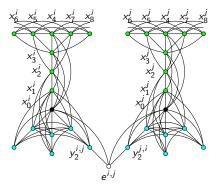
Observation for edge gadgets (case k = 3)

Structure of a 3-tree power:



・ロト ・聞 ト ・ヨト ・ヨト

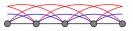
In order to obtain a 3-tree power, we have to insert one edge and to delete two edges in G_{CTP} for every edge in G:



Altogether: $3 \cdot |E|$ edge modifications.

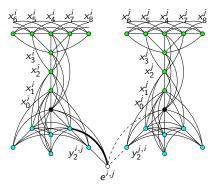
Observation for edge gadgets (case k = 3)

Structure of a 3-tree power:



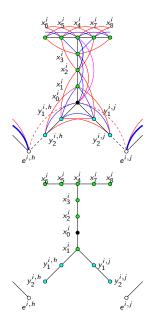
- -

In order to obtain a 3-tree power, we have to insert one edge and to delete two edges in G_{CTP} for every edge in G:



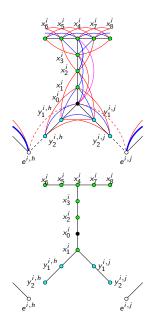
Altogether: $3 \cdot |E|$ edge modifications.

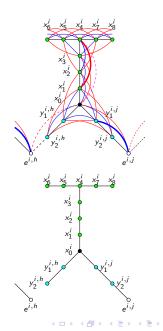
A detailed look on vertex gadgets (case k = 3)



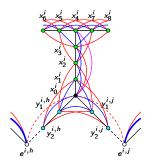
ロト (個) (目) (目) (目) (の)()

A detailed look on vertex gadgets (case k = 3)



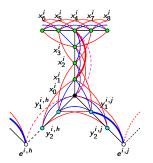


A detailed look on vertex gadgets (case k = 3)



Vertex gadget connected to no edge node:

No edge modification in the vertex gadget



Vertex gadget connected to at least one edge node:

Two edge modifications in the vertex gadget

Counting the edge modifications

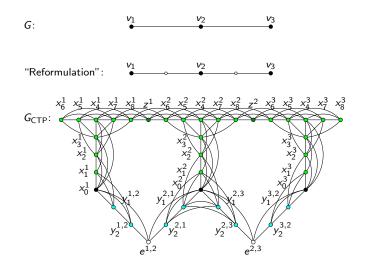
Altogether: #modified edges = $3 \cdot |E| + 2 \cdot #$ vertex gadgets connected to edge nodes

 \Rightarrow Number of vertex gadgets corresponding to red vertices are minimized.

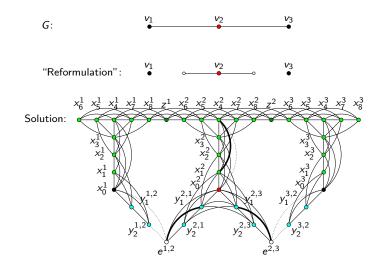
```
Theorem
```

```
G has a vertex cover of size x
```

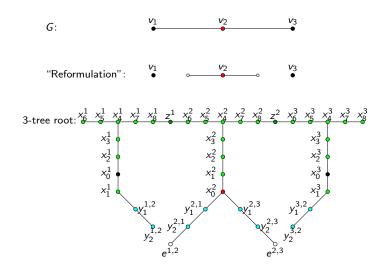
 $\Leftrightarrow G_{CTP} \text{ has a solution of size } 3 \cdot |E| + 2 \cdot x$



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >



◆□ > ◆□ > ◆三 > ◆三 > ・三 ● の Q @ >



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Open questions

- NP-completeness is only shown for Δ ≥ 4. What about Δ = 3?
- What about the hardness if only edge deletions/insertions are allowed?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Approximation or fixed-parameter tractability results for (Δ)-CTPk?