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Structure of the Talk

I Introduction: Tree power and tree root problems

I A reduction from 3-Vertex Cover to
Closest k-Tree Power with Bounded Degree



k-Tree Roots and k-Tree Powers

Example: A tree network consisting of 14 processors. Passing
information from one processor to the next requires one timestep.

tree T

Black edges: Communication possible in one timestep



k-Tree Roots and k-Tree Powers

Example: A tree network consisting of 14 processors. Passing
information from one processor to the next requires one timestep.

2-tree power T 2

Black edges: Communication possible in one timestep
Blue edges: Communication possible in two timesteps



k-Tree Roots and k-Tree Powers

Example: A tree network consisting of 14 processors. Passing
information from one processor to the next requires one timestep.

3-tree power T 3

Black edges: Communication possible in one timestep
Blue edges: Communication possible in two timesteps
Red edges: Communication possible in three timesteps



k-Tree Roots and k-Tree Powers

3-tree power T 3

Definition
A graph G = (V , EG ) is a k-tree power if there is a
tree T = (V , ET ) with

∀u, v ∈ V : distT ≤ k ⇔ (u, v) ∈ EG .

T is called the k-tree root of G .



Tree power recognition / Computing tree roots

Example: Constructing phylogenies.
Given: A graph with node set V—denoting biological
species—and an edge set denoting similarities between the species.
Question: Is there a tree with node set V in which two nodes u, v

have distance at most k iff they are connected in the given graph?
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Example: Constructing phylogenies.
Given: A graph with node set V—denoting biological
species—and an edge set denoting similarities between the species.
Question: Is there a tree with node set V in which two nodes u, v
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Tree power recognition / Computing tree roots

k-Tree Power
Instance: A graph G .
Question: Is there a tree T with T k = G?

I Solvable in linear time for k = 2
[Y. L. Lin, S. S. Skiena, SIAM Journal on Discrete Mathematics, 1995]

I Solvable in polynomial time for every k ≥ 3
[P. E. Kearney, D. G. Corneil, Journal of Algorithms, 1998]

I NP-complete for every k ≥ 2 if T may be an arbitrary graph
(Graph Power problem)
[R. Motwani, M. Sudan, Discrete Applied Mathematics, 1994]



A graph modification problem

What to do if a given graph has no k-tree root?

B g

B C G HA f g h

1

2

3
4

5

6

7

8



A graph modification problem

What to do if a given graph has no k-tree root?

g

f g h

1

2

3
4

5

6

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8



A graph modification problem

What to do if a given graph has no k-tree root?
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A graph modification problem

Closest k-Tree Power (CTPk)
Instance: A graph G .
Question: Is there a k-tree power T k such that T k and G differ
by at most ` edges: |(E (T k) \ E (G )) ∪ (E (G ) \ E (T k))| ≤ `?

I NP-complete for every k ≥ 2
[P. E. Kearney, D. G. Corneil, Journal of Algorithms, 1998]

Closest k-Tree Power with Bounded Degree
(∆-CTPk)
The maximum vertex degree of T is at most ∆.

I Complexity open so far for every k , ∆ ≥ 2. Open question at
COCOON 2004! [T. Tsukiji, Z.-Z. Chen, Proc. 10th COCOON, 2004]



Structure of the Talk

I Introduction: Tree power and tree root problems

I A reduction from 3-Vertex Cover to

Closest k-Tree Power with Bounded Degree



Idea of the reduction

We reduce the NP-complete [M. R. Garey, D. S. Johnson,

L. J. Stockmeyer, Theoretical Computer Science, 1976] problem 3-Vertex
Cover to ∆-CTPk with ∆ ≥ 4.

3-Vertex Cover
Input: A graph G = (V , E ) with a maximum vertex degree 3 and
a nonnegative integer `.
Question: Is there a set C ⊆ V of at most ` vertices such that
each edge from E has at least one endpoint in C?
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“Edge modification version” of 3-Vertex Cover

Reformulation of 3-Vertex Cover:

I We insert an additional node in the middle of each edge.

I The question now is: Delete edges such that

1. each “additional” node is adjacent to exactly one “original”
vertex, and

2. the number of “original” vertices having degree at least one is
minimized.
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node into a degree-1-node—independent of the number of red
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I ⇒ Replace the “original” vertices of the 3-Vertex Cover
instance by gadgets such that for each red vertex further edge
modifications are necessary.



“Edge modification version” of 3-Vertex Cover

I We need |E | edge deletions to transform each “additional”
node into a degree-1-node—independent of the number of red
vertices.

I ∆-CTPk minimizes only the number of modified edges, but
not the number of red vertices.

I ⇒ Replace the “original” vertices of the 3-Vertex Cover
instance by gadgets such that for each red vertex further edge
modifications are necessary.

I Replace the edges of the 3-Vertex Cover instance (and
the “additional” nodes) by gadgets.



Construction of a vertex gadget (case k = 3)

For each “original” vertex vi ∈ V , i = 1, . . . , n of the 3-Vertex
Cover instance G = (V , E ) we insert into the ∆-CTPk

instance GCTP a vertex gadget:
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Making GCTP a connected component (case k = 3)

To guarantee that GCTP is connected we add n − 1 connecting

nodes z i , . . . , zn−1, and for all 1 ≤ i < n we connect the gadgets
of v1 and vi+1:
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Making GCTP a connected component (case k = 3)

To guarantee that GCTP is connected we add n − 1 connecting
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of v1 and vi+1:



Construction of an edge gadget (case k = 3)

For each edge (vi , vj) of the 3-Vertex Cover
instance G = (V , E ) we insert into the ∆-CTPk instance GCTP

an edge gadget consisting of an edge node e i ,j and four edges:
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Example (case k = 3)

G :

“Reformulation”:

GCTP:
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Observation for edge gadgets (case k = 3)

Structure of a 3-tree power:
In order to obtain a 3-tree power, we have to insert one edge and
to delete two edges in GCTP for every edge in G :
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Altogether: 3 · |E | edge modifications.
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A detailed look on vertex gadgets (case k = 3)
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A detailed look on vertex gadgets (case k = 3)
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Vertex gadget connected
to no edge node:

No edge modification
in the vertex gadget

Vertex gadget connected
to at least one edge node:
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Counting the edge modifications

Altogether:
#modified edges =
3 · |E | + 2 · #vertex gadgets connected to edge nodes

⇒ Number of vertex gadgets corresponding to red vertices are
minimized.

Theorem
G has a vertex cover of size x

⇔
GCTP has a solution of size 3 · |E | + 2 · x



Example (case k = 3)
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Example (case k = 3)
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Example (case k = 3)
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Open questions

I NP-completeness is only shown for ∆ ≥ 4. What
about ∆ = 3?

I What about the hardness if only edge deletions/insertions are
allowed?

I Approximation or fixed-parameter tractability results
for (∆)-CTPk?


