Fixed-Parameter Algorithms for Consecutive Ones Submatrix Problems

Michael Dom,
Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Consecutive Ones Property (C1P)

A 0/1-matrix has the C1P if its columns can be permuted such that in each row the ones form a block.

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

1	1			1
1		1		1
1		1	1	

$$
\begin{array}{lllll}
2 & 5 & 1 & 3 & 4
\end{array}
$$

Consecutive Ones Property (C1P)

Examples for matrices not having the C1P:

1	1	0
0	1	1
1	0	1

1	1	0	0
0	1	1	0
0	0	1	1
1	0	0	1

1	1	0	0	0
0	1	1	0	0
0	0	1	1	0
0	0	0	1	1
1	0	0	0	1

$$
\begin{array}{|llll|}
\hline 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\hline
\end{array}
$$

1	1	0	0	0	0
0	0	1	1	0	0
0	0	0	0	1	1
1	0	1	0	1	0

Consecutive Ones Property (C1P)

The Consecutive Ones Property. . .

- ...expresses "locality" of the input data.
-appears in many applications, e.g.
- in railway system optimization
[Ruf, Schöbel, Discrete Optimization, 2004;
Mecke, Wagner, ESA '04],
- bioinformatics [Christof, Oswald, Reinelt, IPCO '98; Lu, Hsu, J. Comp. Biology, 2003].
- ...can be recognized in polynomial time [Booth, Lueker, J. Comput. System Sci., 1976; Meidanis, Porto, Telles, Discrete Appl. Math., 1998; Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000,
Hsu, J. Algorithms, 2002; McConnell, SODA '04].
- ... is subject of current research
[Hajiaghayi, Ganjali, Inf. Process. Lett., 2002;
Tan, Zhang, Algorithmica, 2007].

Problem Definition

Min-COS-C (Min-COS-R)

Given: A matrix M and a positive integer k.
Question: Can we delete at most k columns (at most k rows) such that the resulting matrix has the C1P?

Min-COS-C is NP-complete even on $(2,3)$ - and (3,2)-matrices [Hajiaghayi, Ganjali, Inform. Process. Letters, 2002;
Tan, Zhang, Algorithmica, 2007].
Min-COS-R is NP-complete even on (3, 2)-matrices
[Hajiaghayi, Ganjali, Inform. Process. Letters, 2002].

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(\infty, 2)$	\bullet No const. approx. ${ }^{1}$	
(∞, Δ)	\bullet No const. approx. 1	
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, \infty)$	0.5 -approx 1	
(Δ, ∞)		

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx 1	
$(\infty, 2)$	\bullet No const. approx. \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
(∞, Δ)	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot\|M\|^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, \infty)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.^{1}(\|M\|)\right)$-alg.
(Δ, ∞)		

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx 1	
$(\infty, 2)$	\bullet No const. approx. \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
(∞, Δ)	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot \mid M^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, \infty)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.^{1}(\|M\|)\right)$-alg.
(Δ, ∞)		

Min-COS-C on $(\infty, 2)$-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.
Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Min-COS-C on $(\infty, 2)$-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.
Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Problem Kernel for IDPS

Theorem: IDPS with parameter k admits a problem kernel with $O\left(k^{2}\right)$ vertices and $O\left(k^{2}\right)$ edges.

Data reduction rules:

1. If a degree-two vertex v has two degree-at-most-two neighbors u, w with $\{u, w\} \notin E$, remove v from G and connect u, w by an edge.
2. If a vertex v has more than $k+2$ neighbors, then remove v from G, add v to the solution, and decrease k by one.

Problem Kernel for IDPS

- At most k red vertices.

Problem Kernel for IDPS

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.

Problem Kernel for IDPS

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.

Problem Kernel for IDPS

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.
$\Rightarrow k+3 \cdot k \cdot(k+2)$ vertices.
$\Rightarrow k \cdot(k+2)+3 \cdot k \cdot(k+2)-1$ edges.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(\infty, 2)$	\bullet No const. approx. \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
(∞, Δ)	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot \mid M^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, \infty)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot \operatorname{pol}(\|M\|)\right)$-alg.
(Δ, ∞)		

[^0]
Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

\[

\]

Theorem: A matrix has the C1P iff it contains none of the shown matrices.
[Tucker, Journal of Combinatorial Theory (B), 1972]

$$
\begin{aligned}
& \overbrace{\left\lvert\, \begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \ldots & \cdots & \mathbf{1} & \mathbf{1} & 0 \\
\hline 0 & \mathbf{1} & & \cdots & & \\
\mathbf{1} & & \ldots & \mathbf{1} & 0 & \mathbf{1} \\
M_{\mathrm{II}_{p}}, & p \geq 1
\end{array}\right.}^{p+3}\} p+3 \\
& \left.\begin{array}{c}
\overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots \\
0 & \cdots & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & \cdots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}\} p+2 \\
M_{\mathrm{III}_{p},}, p \geq 1
\end{array}\right\} p+1
\end{aligned}
$$

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

$$
\begin{aligned}
& \overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \ldots & \ldots & \mathbf{1} & \mathbf{1} & 0 \\
\hline 0 & \mathbf{1} & & \cdots & & \mathbf{1} \\
\mathbf{1} & \ldots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}\} p+3 \\
& \left.\begin{array}{c}
\overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \cdots & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & \cdots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}\} p+2 . \\
M_{\mathrm{III}_{p},}, p \geq 1
\end{array}\right\} p+2 \\
&
\end{aligned}
$$

Approach: Use a search tree algorithm.

Repeat:

1. Search for a "forbidden submatrix".
2. Branch on which of its columns has to be deleted.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

$p+2$	
$\begin{array}{lllll}1 & 1 & 0 & \cdots & 0\end{array}$	
0 1 1 0 \cdots	$p+2$
$\begin{array}{llllll}0 & \cdots & 0 & 1 & 1\end{array}$	
$\begin{array}{llllll}1 & 0 & \cdots & 0 & 1\end{array}$	
$M_{\mathrm{I}_{p}}, p \geq 1$	

$\overbrace{\begin{array}{|ccccc|c}\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\ 0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots \\ 0 & \ldots & & 0 & \mathbf{1} & \mathbf{1} \\ \hline 0 & \mathbf{1} & & \cdots & 0 \\ \mathbf{1} & \ldots & \mathbf{1} & 0 & \mathbf{1} \\ M_{\mathrm{II}_{p}}, & p \geq 1\end{array}}^{p+3}\} p+3$

$$
\left.\overbrace{\overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \cdots & 0 \\
0 & \cdots & 0 & \mathbf{1} & \mathbf{1} & 0 \\
\hline 0 & \mathbf{1} & \cdots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}}^{M_{\mathrm{III}_{p},}, p \geq 1} \right\rvert\,\} p+2
$$

A (∞, Δ)-matrix can contain

- $M_{1_{p}}$ with unbounded size,
- $M_{I_{p}}$ with $1 \leq p \leq \Delta-2$,
- $M_{\text {III }_{p}}$ with $1 \leq p \leq \Delta-1$,
- M_{IV}, and M_{V}.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur. Idea: Analogy to IDPS.

Forbidden subgraphs for vertex-disjoint unions of paths:

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
& X:=\left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}}^{p}|~| 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices
Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{II} p} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{1_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices
If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property.

Components of a matrix:

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
r_{1}	1	1	0	1	0	0
r_{2}	0	1	0	0	0	0
r_{3}	0	1	1	1	0	0
r_{4}	0	0	0	0	1	1

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property.

A 0/1-matrix M has the circular ones property if its columns can be permuted such that in each row the ones form a block when M is wrapped around a vertical cylinder.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property.

Proof by contraposition:

If a component B of a (∞, Δ)-matrix does not have the circular ones property, then it contains one of the submatrices from X.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the circular ones property iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the circular ones property iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the circular ones property iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Component B without circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Component B without circular ones property. $\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Component B without circular ones property.
$\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.
\Rightarrow There is a forbidden submatrix A^{\prime} in B^{\prime}.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

Component B without circular ones property.
$\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.
\Rightarrow There is a forbidden submatrix A^{\prime} in B^{\prime}.
\Rightarrow We can always find a submatrix from X in B.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices
Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{1_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a (∞, Δ)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Min-COS-C / Min-COS-R on (∞, Δ)-Matrices

 Min-COS-C can be solved in polynomial time on a (∞, Δ)-matrix with the circular ones property.

Open questions

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(\infty, 2)$	\bullet No const. approx. \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
(∞, Δ)	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot\|M\|^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, \infty)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.(\|M\|)\right)$-alg.
(Δ, ∞)	$?$	$?$

Also open: Deletion of entries instead of columns or rows?

$$
{ }^{1} \text { [Tan, Zhang, Algorithmica, 2007] }
$$

[^0]: ${ }^{1}$ [Tan, Zhang, Algorithmica, 2007]

