Fixed-Parameter Algorithms for Consecutive Ones Submatrix Problems

Michael Dom, Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

A 0/1-matrix has the C1P if its columns can be permuted such that in each row the ones form a block.

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Example for a matrix having the C1P:

Examples for matrices **not** having the C1P:

1	1	0
0	1	1
1	0	1

```
1 1 0 0
0 1 1 0
0 1 0 1
```

1	1	0	0	0	0
0	0	1	1	0	0
0	0	0	0	1	1
1	0	1	0	1	0

The Consecutive Ones Property...

- ... expresses "locality" of the input data.
- ...appears in many applications, e.g.
 - in railway system optimization
 [Ruf, Schöbel, Discrete Optimization, 2004;
 Mecke, Wagner, ESA '04],
 - bioinformatics
 [Christof, Oswald, Reinelt, IPCO '98;
 Lu, Hsu, J. Comp. Biology, 2003].
- ...can be recognized in polynomial time
 [Booth, Lueker, J. Comput. System Sci., 1976;
 Meidanis, Porto, Telles, Discrete Appl. Math., 1998;
 Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000,
 Hsu, J. Algorithms, 2002; McConnell, SODA '04].
- ... is subject of current research
 [Hajiaghayi, Ganjali, Inf. Process. Lett., 2002;
 Tan, Zhang, Algorithmica, 2007].

Problem Definition

Min-COS-C (Min-COS-R)

Given: A matrix M and a positive integer k.

Question: Can we delete at most k columns (at most k rows) such that the resulting matrix has the C1P?

Min-COS-C is NP-complete even on (2,3)- and (3,2)-matrices [Hajiaghayi, Ganjali, Inform. Process. Letters, 2002;

Tan, Zhang, Algorithmica, 2007].

Min-COS-R is NP-complete even on (3,2)-matrices

[Hajiaghayi, Ganjali, Inform. Process. Letters, 2002].

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
$(\infty,2)$	• No const. approx. ¹	
(∞,Δ)	• No const. approx. ¹	
(2,3)	0.8-approx ¹	
$(2,\infty)$	0.5-approx ¹	
(Δ,∞)		

¹[Tan, Zhang, Algorithmica, 2007]

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3, 2)	0.5-approx ¹	
$(\infty,2)$	No const. approx.¹W[1]-hard	No 2,72-approx.Problem kernel
(∞,Δ)	No const. approx.¹W[1]-hard	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot M ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
$(2,\infty)$	0.5-approx ¹	• 6-approx • $O(6^k \cdot pol(M))$ -alg.
(Δ,∞)		

¹[Tan, Zhang, Algorithmica, 2007]

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
$(\infty,2)$	 No const. approx.¹ W[1]-hard 	No 2,72-approx.Problem kernel
(∞,Δ)	No const. approx.¹W[1]-hard	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot M ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
$(2,\infty)$	0.5-approx ¹	• 6-approx • $O(6^k \cdot pol(M))$ -alg.
(Δ,∞)		

¹[Tan, Zhang, Algorithmica, 2007]

Min-COS-C on $(\infty, 2)$ -Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.

Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Min-COS-C on $(\infty, 2)$ -Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.

Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Theorem: IDPS with parameter k admits a problem kernel with $O(k^2)$ vertices and $O(k^2)$ edges.

Data reduction rules:

1. If a degree-two vertex v has two degree-at-most-two neighbors u, w with $\{u, w\} \notin E$, remove v from G and connect u, w by an edge.

2. If a vertex v has more than k+2 neighbors, then remove v from G, add v to the solution, and decrease k by one.

▶ At most *k* red vertices.

- At most k red vertices.
- ▶ They have at most $k \cdot (k+2)$ blue neighbors.

- At most k red vertices.
- ▶ They have at most $k \cdot (k+2)$ blue neighbors.
- ► At least every third blue vertex must be a neighbor of a red vertex.

- At most k red vertices.
- ▶ They have at most $k \cdot (k+2)$ blue neighbors.
- ► At least every third blue vertex must be a neighbor of a red vertex.
- $\Rightarrow k + 3 \cdot k \cdot (k + 2)$ vertices.
- $\Rightarrow k \cdot (k+2) + 3 \cdot k \cdot (k+2) 1$ edges.

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3, 2)	0.5-approx ¹	
$(\infty,2)$	No const. approx.¹W[1]-hard	No 2,72-approx.Problem kernel
(∞,Δ)	No const. approx.¹W[1]-hard	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot M ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
$(2,\infty)$	0.5-approx ¹	• 6-approx • $O(6^k \cdot pol(M))$ -alg.
(Δ,∞)		

¹[Tan, Zhang, Algorithmica, 2007]

$$\begin{array}{c} \begin{array}{c} p+2 \\ \hline \begin{array}{c} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 1 \\ \hline 1 & 0 & \cdots & 0 & 1 & 1 \\ \hline 1 & 0 & \cdots & 0 & 1 & 1 \\ \hline 1 & 0 & \cdots & 0 & 1 & 1 \\ \hline M_{I_p}, & p \geq 1 \end{array} \end{array} \right) p+2 \\ \begin{array}{c} \begin{array}{c} p+3 \\ \hline 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ \hline 0 & 1 & 1 & 0 & \cdots & 0 \\ \hline 0 & 1 & \cdots & 1 & 0 & 1 \\ \hline 1 & \cdots & 1 & 0 & 1 \\ \hline M_{II_p}, & p \geq 1 \end{array} \right\} p+3 \\ \begin{array}{c} \begin{array}{c} p+3 \\ \hline 1 & 1 & 0 & \cdots & 0 \\ \hline 0 & 1 & 1 & 0 & \cdots & 0 \\ \hline 0 & 1 & 1 & 0 & 0 \\ \hline 0 & 1 & \cdots & 1 & 0 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 \\ \hline M_{IV} \end{array} \right\} p+2 \\ \end{array}$$

Theorem: A matrix has the C1P iff it contains none of the shown matrices.

[Tucker, Journal of Combinatorial Theory (B), 1972]

Approach: Use a search tree algorithm.

Repeat:

- 1. Search for a "forbidden submatrix".
- 2. Branch on which of its columns has to be deleted.

A (∞, Δ) -matrix can contain

- ► M_{In} with unbounded size,
- ▶ M_{II_p} with $1 \le p \le \Delta 2$,
- ▶ M_{III_p} with $1 \leq p \leq \Delta 1$,
- $ightharpoonup M_{\rm IV}$, and $M_{\rm V}$.

Problem: Matrices M_{l_p} of unbounded size can occur.

Problem: Matrices M_{l_p} of unbounded size can occur.

Idea: Analogy to IDPS.

Forbidden subgraphs for vertex-disjoint unions of paths:

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$X := \{ M_{\mathsf{I}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \le p \le \Delta - 2 \}$$
$$\cup \{ M_{\mathsf{III}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}.$$

2. Destroy the remaining M_{l_p} $(p \ge \Delta)$.

- ▶ We can find a submatrix from *X* in polynomial time.
- ▶ If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- ▶ Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ) -matrix with the circular ones property.

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$X := \{ M_{\mathsf{I}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \le p \le \Delta - 2 \}$$
$$\cup \{ M_{\mathsf{III}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}.$$

2. Destroy the remaining M_{I_p} $(p \ge \Delta)$.

- ▶ We can find a submatrix from *X* in polynomial time.
- ▶ If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- ▶ Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ) -matrix with the circular ones property.

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$X := \{ M_{\mathsf{I}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \le p \le \Delta - 2 \}$$
$$\cup \{ M_{\mathsf{III}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}.$$

2. Destroy the remaining M_{I_p} $(p \ge \Delta)$.

- ▶ We can find a submatrix from *X* in polynomial time.
- ▶ If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- ▶ Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ) -matrix with the circular ones property.

If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones* property.

Components of a matrix:

	c_1	c_2	c_3	c_4	c_5	c_6
r_1	1	1	0 0 1	1	0	0
r_2	0	1	0	0	0	0
r_3	0	1	1	1	0	0
r_4	0	0	0	0	1	1

If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones property*.

A 0/1-matrix M has the circular ones property if its columns can be permuted such that in each row the ones form a block when M is wrapped around a vertical cylinder.

If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones* property.

Proof by contraposition:

If a component B of a (∞, Δ) -matrix does not have the circular ones property, then it contains one of the submatrices from X.

Theorem: Let M be a matrix and c_j be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_j . Then M has the circular ones property iff M' has the C1P.

[Tucker, Pacific Journal of Mathematics, 1971]

Theorem: Let M be a matrix and c_i be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_i . Then M has the circular ones property iff M' has the C1P.

[Tucker, Pacific Journal of Mathematics, 1971]

Theorem: Let M be a matrix and c_j be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_j . Then M has the circular ones property iff M' has the C1P.

[Tucker, Pacific Journal of Mathematics, 1971]

Component B without circular ones property.

Component B without circular ones property.

 $\Rightarrow \exists$ column c such that B' does not have the C1P.

Component *B* without circular ones property.

- $\Rightarrow \exists$ column c such that B' does not have the C1P.
- \Rightarrow There is a forbidden submatrix A' in B'.

Component *B* without circular ones property.

- $\Rightarrow \exists$ column c such that B' does not have the C1P.
- \Rightarrow There is a forbidden submatrix A' in B'.
- \Rightarrow We can always find a submatrix from X in B.

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$X := \{ M_{\mathsf{I}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \le p \le \Delta - 2 \}$$
$$\cup \{ M_{\mathsf{III}_p} \mid 1 \le p \le \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}.$$

2. Destroy the remaining M_{I_p} $(p \ge \Delta)$.

- ▶ We can find a submatrix from *X* in polynomial time.
- ▶ If a (∞, Δ) -matrix M contains none of the matrices in X as a submatrix, then M can be divided into submatrices that have the "circular ones property".
- ▶ Min-COS-C / Min-COS-R can be solved in polynomial time on a (∞, Δ) -matrix with the circular ones property.

Open questions

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
$(\infty,2)$	 No const. approx.¹ W[1]-hard 	No 2,72-approx.Problem kernel
(∞,Δ)	No const. approx.¹W[1]-hard	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot M ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
$(2,\infty)$	0.5-approx ¹	• 6-approx • $O(6^k \cdot pol(M))$ -alg.
(Δ,∞)	?	?

Also open: Deletion of entries instead of columns or rows?

¹[Tan, Zhang, Algorithmica, 2007]