Approximation and Fixed-Parameter Algorithms for Consecutive Ones Submatrix Problems

Michael Dom, Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Chennai, October 2007

A 0/1-matrix has the C1P if its columns can be permuted such that in each row the ones form a block.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Examples for matrices **not** having the C1P:

0 1 0 1 0

The Consecutive Ones Property...

-expresses "locality" of the input data.
- ... appears in many applications, e.g.
 - in railway system optimization [Ruf, Schöbel, Discrete Optimization, 2004; Mecke, Wagner, ESA '04],
 - bioinformatics [Christof, Oswald, Reinelt, IPCO '98; Lu, Hsu, J. Comp. Biology, 2003].

 ... can be recognized in polynomial time [Booth, Lueker, J. Comput. System Sci., 1976; Meidanis, Porto, Telles, Discrete Appl. Math., 1998; Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000, Hsu, J. Algorithms, 2002; McConnell, SODA '04].

 ... is subject of current research [Hajiaghayi, Ganjali, Inf. Process. Lett., 2002; Tan, Zhang, Algorithmica, 2007].

Problem Definition

Min-COS-C (Min-COS-R)

Given: A matrix M and a positive integer k.

Question: Can we delete at most k columns (at most k rows) such that the resulting matrix has the C1P?

Min-COS-C is NP-complete even on (2, 3)- and (3, 2)-matrices [Hajiaghayi, Ganjali, Inform. Process. Letters, 2002; Tan, Zhang, Algorithmica, 2007]. Min-COS-R is NP-complete even on (3, 2)-matrices [Hajiaghayi, Ganjali, Inform. Process. Letters, 2002].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
(*,2)	• No const. approx. ¹	
(*,Δ)	• No const. approx. ¹	
(2,3)	0.8-approx ¹	
(2,*)	0.5-approx ¹	
$(\Delta,*)$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

¹[Tan, Zhang, Algorithmica, 2007]

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
(*,2)	 No const. approx.¹ W[1]-hard 	No 2,72-approx.Problem kernel
(*,Δ)	 No const. approx.¹ W[1]-hard 	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot \mathcal{M} ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
(2,*)	0.5-approx ¹	 6-approx O(6^k · pol(M))-alg.
$(\Delta, *)$		

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

¹[Tan, Zhang, Algorithmica, 2007]

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
(*,2)	 No const. approx.¹ W[1]-hard 	No 2,72-approx.Problem kernel
(*,Δ)	 No const. approx.¹ W[1]-hard 	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot M ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
(2,*)	0.5-approx ¹	 6-approx O(6^k · pol(M))-alg.
$(\Delta, *)$		

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

¹[Tan, Zhang, Algorithmica, 2007]

Theorem: A matrix has the C1P iff it contains none of the shown matrices.

3) J

[Tucker, Journal of Combinatorial Theory (B), 1972]

Approach: Use a search tree algorithm.

Repeat:

- 1. Search for a "forbidden submatrix".
- 2. Branch on which of its columns has to be deleted.

Search Tree Algorithm:

Finite size c of forbidden matrices \Rightarrow search tree of size $O(c^k)$. (Alternatively: Factor-c approximation algorithm.)

э

- A ($*, \Delta$)-matrix can contain
 - M_{I_p} with unbounded size,
 - $M_{{\sf II}_p}$ with $1 \le p \le \Delta 2$,
 - M_{Π_p} with $1 \le p \le \Delta 1$,
 - ► M_{IV}, and M_V.

Problem: Matrices M_{I_p} of unbounded size can occur.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem: Matrices M_{l_p} of unbounded size can occur.

Idea: First destroy all "small" forbidden submatrices (search tree algorithm), and then see what happens...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Algorithmic framework for Min-COS-C / Min-COS-R:

 $1. \ {\rm Destroy} \ {\rm the} \ {\rm submatrices} \ {\rm from}$

$$egin{aligned} X &:= \{ M_{\mathsf{I}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \leq p \leq \Delta - 2 \} \ &\cup \{ M_{\mathsf{III}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}. \end{aligned}$$

2. Destroy the remaining M_{l_p} $(p \ge \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a (*, Δ)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on (*, Δ)-matrices with the Circ1P.

(日) (日) (日) (日) (日) (日) (日) (日)

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$\begin{aligned} X &:= \{ M_{\mathsf{I}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \leq p \leq \Delta - 2 \} \\ &\cup \{ M_{\mathsf{III}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}. \end{aligned}$$

2. Destroy the remaining M_{I_p} $(p \ge \Delta)$.

We show:

▶ We can find a submatrix from *X* in polynomial time.

- If a (*, △)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on (*, Δ)-matrices with the Circ1P.

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$\begin{aligned} X &:= \{ M_{\mathsf{I}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \leq p \leq \Delta - 2 \} \\ &\cup \{ M_{\mathsf{III}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}. \end{aligned}$$

2. Destroy the remaining M_{l_p} $(p \ge \Delta)$.

We show:

▶ We can find a submatrix from X in polynomial time.

If a (*, △)-matrix *M* contains none of the matrices in *X* as a submatrix, then *M* can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".

 Min-COS-C / Min-COS-R can be solved in polynomial time on (*, Δ)-matrices with the Circ1P.

If a $(*, \Delta)$ -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones* property (*Circ1P*).

[Dom, Guo, Niedermeier, TAMC '07]

Components of a matrix:

-

If a $(*, \Delta)$ -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones* property (*Circ1P*).

[Dom, Guo, Niedermeier, TAMC '07]

A 0/1-matrix M has the Circ1P if its columns can be permuted such that in each row the 1's form a block when M is wrapped around a vertical cylinder.

Min-COS-C / Min-COS-R on $(*, \Delta)$ -Matrices If a $(*, \Delta)$ -matrix M contains none of the matrices in X as a submatrix, then every component of M has the *circular ones property (Circ1P)*.

[Dom, Guo, Niedermeier, TAMC '07]

Proof by contraposition:

If a component B of a $(*, \Delta)$ -matrix does not have the Circ1P, then it contains one of the submatrices from X.

・ロット (日) (日) (日) (日) (日)

Theorem: Let M be a matrix and c_j be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_j . Then M has the Circ1P iff M' has the C1P.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 - めるの

[Tucker, Pacific Journal of Mathematics, 1971]

Theorem: Let M be a matrix and c_j be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_j . Then M has the Circ1P iff M' has the C1P.

[Tucker, Pacific Journal of Mathematics, 1971]

Theorem: Let M be a matrix and c_j be a column of M. Form the matrix M' from M by complementing all rows with a 1 in column c_j . Then M has the Circ1P iff M' has the C1P.

[Tucker, Pacific Journal of Mathematics, 1971]

・ロット 4回ット 4回ット 4回ット 4日ッ

Component *B* without circular ones property.

E 990

3

< 日 > < 同 > < 国 >

Component *B* without circular ones property. $\Rightarrow \exists$ column *c* such that *B'* does not have the C1P.

= 900

Component *B* without circular ones property.

- $\Rightarrow \exists$ column *c* such that *B*' does not have the C1P.
- \Rightarrow There is a forbidden submatrix A' in B'.

= 900

Component *B* without circular ones property.

- $\Rightarrow \exists$ column *c* such that *B*' does not have the C1P.
- \Rightarrow There is a forbidden submatrix A' in B'.
- \Rightarrow We can always find a submatrix from X in B.

= 900

Case study 1: A' is an M_{IV} , row 2 has been complemented.

э

< 口 > < 同 >

Then we can find an M_V in B.

Case study 2: A' is an M_V , row 3 has been complemented.

э

Then we can find an $M_{\rm IV}$ in B.

Min-COS-C / Min-COS-R on $(*, \Delta)$ -Matrices Most complicated case: A' is an M_{l_p} with $p \ge \Delta$.

Then we can find an M_{III_1} or an M_{IV} in B.

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$\begin{aligned} X &:= \{ M_{\mathsf{I}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{II}_p} \mid 1 \leq p \leq \Delta - 2 \} \\ &\cup \{ M_{\mathsf{III}_p} \mid 1 \leq p \leq \Delta - 1 \} \cup \{ M_{\mathsf{IV}}, M_{\mathsf{V}} \}. \end{aligned}$$

2. Destroy the remaining $M_{{\rm I}_p}~(p\geq \Delta).$

We show:

- ▶ We can find a submatrix from X in polynomial time.
- If a (*, △)-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- ► Min-COS-C / Min-COS-R can be solved in polynomial time on (*, △)-matrices with the Circ1P.

C1P: 1's blockwise after column permutations Circ1P: 1's blockwise on a cylinder after column permutations strong C1P: 1's blockwise *without* column permutations strong Circ1P: 1's blockwise on a cylinder *without* column permutations

(Circ1P/C1P means: Strong Circ1P/strong C1P can be obtained by column permutations.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

・ロト ・聞ト ・ヨト ・ヨト

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

$\begin{array}{l} {\sf Strong} \ {\sf C1P} = \\ {\sf Strong} \ {\sf Circ1P} + \ ``{\sf cut}" \end{array}$

Our task:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Our task:

・ロト・(型)・(目)・(目)・(日)・(の)への

Our task:

Obs.: Deleting a consecutive set of columns is always optimal.

< 🗇 >

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • • • • • • •

Our task:

We hope: Does "strong Circ1P + C1P" imply "strong C1P"?

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 - めるの

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

・ロト・日本・日本・日本・日本・日本

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

(★ 문 ▶ | ★ 문 ▶

< 口 > < 同 >

Counterexample:

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

- ∢ ⊒ →

< 口 > < 同 >

Counterexample:

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

New conjecture: If a matrix with $\geq 2\Delta - 1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

To be proven: If a matrix with $\geq 2\Delta - 1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful: *Theorem:* Let *M* have the strong Circ1P. Then *every* column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals. [Hsu, McConnell, Theor. Comput. Sci., 2003]

・ロット (日) (日) (日) (日) (日)

To be proven: If a matrix with $\geq 2\Delta - 1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:

Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.

[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P+ C1P

- ロト ・ 同ト ・ ヨト ・ ヨト

∃ \000

To be proven: If a matrix with $\geq 2\Delta - 1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:

Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.

[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P+ strong C1P

strong Circ1P+ C1P

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

∃ \(\0 \Q \Q \Q)

To be proven: If a matrix with $\geq 2\Delta - 1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:

Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.

[Hsu, McConnell, Theor. Comput. Sci., 2003]

Now to be proven: Let M be a matrix with with $\geq 2\Delta - 1$ columns that has the strong Circ1P and the strong C1P. Reversing an arbitrary circular module of M does not affect these properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Algorithm for Min-COS-C on matrices with Circ1P:

- 1. Permute the columns to get the strong Circ1P.
- 2. Search for a set of *consecutive* consecutive columns whose deletion yields the strong C1P.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

[Dom, Niedermeier, ACiD '07]

Results for Min-COS-C and Min-COS-R

FPT algorithm:

 $\begin{array}{rll} & \operatorname{Running time:} \\ & \underline{(|\mathsf{submatrix}|)^k} & \cdot & (\mathsf{search} & + & ``\mathsf{Circ1P} \rightarrow \mathsf{C1P'' time}) \\ & \underline{(\Delta+2)^k} & \cdot & (n^{O(1)} & + & O(\Delta mn)) \end{array}$

Approximation algorithm:

Approximation factor:|submatrix|Running time: $k \cdot (search + "Circ1P \rightarrow C1P" time)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

How can a matrix that has the (strong) Circ1P be modified by deleting a minimum number of 1-entries such that the resulting matrix has the C1P?

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

More Open Questions

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
(3,2)	0.5-approx ¹	
(*,2)	 No const. approx.¹ W[1]-hard 	No 2,72-approx.Problem kernel
(*,Δ)	 No const. approx.¹ W[1]-hard 	• $(\Delta + 2)$ -approx. • $O((\Delta + 2)^k \cdot \Delta^{O(\Delta)} \cdot \mathcal{M} ^{O(1)})$ -alg.
(2,3)	0.8-approx ¹	
(2,*)	0.5-approx ¹	 6-approx O(6^k · pol(M))-alg.
$(\Delta, *)$?	?

¹[Tan, Zhang, Algorithmica, 2007]

Michael Dom, Universität Jena: Consecutive Ones Submatrix Problems

33

Jena, Germany

≡ ∽へぐ

34

Min-COS-C on (*, 2)-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k. Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

E 990

Min-COS-C on (*, 2)-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k. Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

∃ \000

Problem Kernel: Given a parameterized problem instance (X, k). Transform it in polynomial time into an instance (X', k')with $|X'| \le f(k)$ and $k' \le k$.

・ロット (日) (日) (日) (日) (日)

Theorem: IDPS with parameter k admits a problem kernel with $O(k^2)$ vertices and $O(k^2)$ edges.

Data reduction rules:

1. If a degree-two vertex v has two degree-at-most-two neighbors u, w with $\{u, w\} \notin E$, remove v from G and connect u, w by an edge.

2. If a vertex v has more than k + 2 neighbors, then remove v from G, add v to the solution, and decrease k by one.

At most k red vertices.

- At most *k* red vertices.
- They have at most $k \cdot (k+2)$ blue neighbors.

< □ > < 同 >

- At most *k* red vertices.
- They have at most $k \cdot (k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.

≣ ୬९୯

- At most k red vertices.
- They have at most $k \cdot (k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.
- $\Rightarrow k + 3 \cdot k \cdot (k+2) \text{ vertices.} \\ \Rightarrow k \cdot (k+2) + 3 \cdot k \cdot (k+2) 1 \text{ edges.}$

∃ \000