
Approximation and Fixed-Parameter Algorithms
for Consecutive Ones Submatrix Problems

Michael Dom, Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Chennai, October 2007

1



Consecutive Ones Property (C1P)
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A 0/1-matrix has the C1P if its columns can be permuted such
that in each row the ones form a block.
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Consecutive Ones Property (C1P)

Example for a matrix having the C1P:
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Consecutive Ones Property (C1P)

Examples for matrices not having the C1P:
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Consecutive Ones Property (C1P)
The Consecutive Ones Property. . .

◮ . . . expresses “locality” of the input data.

◮ . . . appears in many applications, e.g.

◮ in railway system optimization
[Ruf, Schöbel, Discrete Optimization, 2004;

Mecke, Wagner, ESA ’04],
◮ bioinformatics

[Christof, Oswald, Reinelt, IPCO ’98;

Lu, Hsu, J. Comp. Biology, 2003].

◮ . . . can be recognized in polynomial time
[Booth, Lueker, J. Comput. System Sci., 1976;
Meidanis, Porto, Telles, Discrete Appl. Math., 1998;
Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000,

Hsu, J. Algorithms, 2002; McConnell, SODA ’04].

◮ . . . is subject of current research
[Hajiaghayi, Ganjali, Inf. Process. Lett., 2002;

Tan, Zhang, Algorithmica, 2007].
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Problem Definition

Min-COS-C (Min-COS-R)
Given: A matrix M and a positive integer k .
Question: Can we delete at most k columns (at most k rows) such
that the resulting matrix has the C1P?

Min-COS-C is NP-complete even on (2, 3)- and (3, 2)-matrices
[Hajiaghayi, Ganjali, Inform. Process. Letters, 2002;

Tan, Zhang, Algorithmica, 2007].
Min-COS-R is NP-complete even on (3, 2)-matrices
[Hajiaghayi, Ganjali, Inform. Process. Letters, 2002].
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Problem Overview

(1’s per col,
1’s per row)

Max-COS-C Min-COS-C

(3, 2) 0.5-approx1

(∗, 2) • No const. approx.1

(∗, ∆) • No const. approx.1

(2, 3) 0.8-approx1

(2, ∗) 0.5-approx1

(∆, ∗)

1[Tan, Zhang, Algorithmica, 2007]
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Problem Overview

(1’s per col,
1’s per row)

Max-COS-C Min-COS-C

(3, 2) 0.5-approx1

(∗, 2)
• No const. approx.1

• W[1]-hard
• No 2,72-approx.
• Problem kernel

(∗, ∆)
• No const. approx.1

• W[1]-hard

• (∆ + 2)-approx.
• O((∆+2)k ·∆O(∆) · |M|O(1))-alg.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
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Theorem: A matrix has the C1P iff it contains none of the shown
matrices.
[Tucker, Journal of Combinatorial Theory (B), 1972]
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
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Approach: Use a search tree algorithm.

Repeat:

1. Search for a “forbidden submatrix”.

2. Branch on which of its columns has to be deleted.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices

Search Tree Algorithm:

c

k

O(ck )

Finite size c of forbidden matrices ⇒ search tree of size O(ck).
(Alternatively: Factor-c approximation algorithm.)
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
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A (∗, ∆)-matrix can contain

◮ MIp with unbounded size,

◮ MIIp with 1 ≤ p ≤ ∆ − 2,

◮ MIIIp with 1 ≤ p ≤ ∆ − 1,

◮ MIV, and MV.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices

Problem: Matrices MIp of unbounded size can occur.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices

Problem: Matrices MIp of unbounded size can occur.

Idea: First destroy all “small” forbidden submatrices (search tree
algorithm), and then see what happens. . .
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

X := {MIp | 1 ≤ p ≤ ∆ − 1} ∪ {MIIp | 1 ≤ p ≤ ∆ − 2}

∪ {MIIIp | 1 ≤ p ≤ ∆ − 1} ∪ {MIV, MV}.

2. Destroy the remaining MIp (p ≥ ∆).

We show:

◮ We can find a submatrix from X in polynomial time.

◮ If a (∗, ∆)-matrix M contains none of the matrices in X as a
submatrix, then M can be divided into “independent”
submatrices that have the “circular ones property (Circ1P)”.

◮ Min-COS-C / Min-COS-R can be solved in polynomial time
on (∗, ∆)-matrices with the Circ1P.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
If a (∗, ∆)-matrix M contains none of the matrices in X as a
submatrix, then every component of M has the circular ones
property (Circ1P).
[Dom, Guo, Niedermeier, TAMC ’07]

Components of a matrix:
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
If a (∗, ∆)-matrix M contains none of the matrices in X as a
submatrix, then every component of M has the circular ones
property (Circ1P).
[Dom, Guo, Niedermeier, TAMC ’07]
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A 0/1-matrix M has the Circ1P if its columns can be permuted such
that in each row the 1’s form a block when M is wrapped around a
vertical cylinder.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
If a (∗, ∆)-matrix M contains none of the matrices in X as a
submatrix, then every component of M has the circular ones
property (Circ1P).
[Dom, Guo, Niedermeier, TAMC ’07]

Proof by contraposition:

If a component B of a (∗, ∆)-matrix does not have the Circ1P, then
it contains one of the submatrices from X .
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Theorem: Let M be a matrix and cj be a column of M. Form the
matrix M ′ from M by complementing all rows with a 1 in
column cj . Then M has the Circ1P iff M ′ has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Theorem: Let M be a matrix and cj be a column of M. Form the
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Component B without circular ones property.

B
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Component B without circular ones property.
⇒ ∃ column c such that B ′ does not have the C1P.

cc

B B
′
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Component B without circular ones property.
⇒ ∃ column c such that B ′ does not have the C1P.
⇒ There is a forbidden submatrix A′ in B ′.

cc

A A
′

B B
′
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Component B without circular ones property.
⇒ ∃ column c such that B ′ does not have the C1P.
⇒ There is a forbidden submatrix A′ in B ′.
⇒ We can always find a submatrix from X in B.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
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Case study 1: A′ is an MIV, row 2 has been complemented.
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Then we can find an MV in B.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
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Case study 2: A′ is an MV, row 3 has been complemented.
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Then we can find an MIV in B.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices
Most complicated case: A′ is an MIp with p ≥ ∆.
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Then we can find an MIII1 or an MIV in B.
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Min-COS-C / Min-COS-R on (∗, ∆)-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

X := {MIp | 1 ≤ p ≤ ∆ − 1} ∪ {MIIp | 1 ≤ p ≤ ∆ − 2}

∪ {MIIIp | 1 ≤ p ≤ ∆ − 1} ∪ {MIV, MV}.

2. Destroy the remaining MIp (p ≥ ∆).

We show:

◮ We can find a submatrix from X in polynomial time.

◮ If a (∗, ∆)-matrix M contains none of the matrices in X as a
submatrix, then M can be divided into “independent”
submatrices that have the “circular ones property (Circ1P)”.

◮ Min-COS-C / Min-COS-R can be solved in polynomial
time on (∗, ∆)-matrices with the Circ1P.
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From Circ1P to C1P

C1P: 1’s blockwise after column permutations
Circ1P: 1’s blockwise on a cylinder

after column permutations
strong C1P: 1’s blockwise without column permutations
strong Circ1P: 1’s blockwise on a cylinder

without column permutations

(Circ1P/C1P means: Strong Circ1P/strong C1P can be obtained
by column permutations.)
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From Circ1P to C1P

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P =
Strong Circ1P + “cut”

Strong C1P:

Strong C1P =
Strong Circ1P + “cut”
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From Circ1P to C1P
Our task:

strong Circ1P −→
column deletions

strong Circ1P +
C1P
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From Circ1P to C1P
Our task:

strong Circ1P −→
column deletions

strong Circ1P +
C1P

First consider this task:

strong Circ1P −→
column deletions

strong Circ1P +
strong C1P

Obs.: Deleting a consecutive set of columns is always optimal.
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From Circ1P to C1P
Our task:

strong Circ1P −→
column deletions

strong Circ1P +
C1P

First consider this task: Easy!!!

strong Circ1P −→
column deletions

strong Circ1P +
strong C1P

We hope: Does “strong Circ1P + C1P” imply “strong C1P”?
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From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it
has also the strong C1P.
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From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it
has also the strong C1P.

Counterexample:

New conjecture: If a matrix with ≥ 2∆− 1 columns has the strong
Circ1P and the C1P, then it has also the strong C1P.
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From Circ1P to C1P

To be proven: If a matrix with ≥ 2∆ − 1 columns has the strong
Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column
permutation that also yields the strong Circ1P can be obtained by
a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]
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From Circ1P to C1P

Now to be proven: Let M be a matrix with with ≥ 2∆ − 1
columns that has the strong Circ1P and the strong C1P. Reversing
an arbitrary circular module of M does not affect these properties.
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From Circ1P to C1P

Algorithm for Min-COS-C on matrices with Circ1P:

1. Permute the columns to get the strong Circ1P.

2. Search for a set of consecutive consecutive columns whose
deletion yields the strong C1P.

[Dom, Niedermeier, ACiD ’07]
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Results for Min-COS-C and Min-COS-R

FPT algorithm:
Running time:
(|submatrix|)k · (search + “Circ1P→C1P” time)

(∆ + 2)k · (nO(1) + O(∆mn))

Approximation algorithm:
Approximation factor: |submatrix|
Running time: k · (search + “Circ1P→ C1P” time)
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Open Question

How can a matrix that has the (strong) Circ1P be modified by
deleting a minimum number of 1-entries such that the resulting
matrix has the C1P?
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More Open Questions

(1’s per col,
1’s per row)

Max-COS-C Min-COS-C

(3, 2) 0.5-approx1

(∗, 2)
• No const. approx.1

• W[1]-hard
• No 2,72-approx.
• Problem kernel

(∗, ∆)
• No const. approx.1

• W[1]-hard

• (∆ + 2)-approx.
• O((∆+2)k ·∆O(∆) · |M|O(1))-alg.

(2, 3) 0.8-approx1

(2, ∗) 0.5-approx1
• 6-approx
• O(6k · pol(|M|))-alg.

(∆, ∗) ? ?

1[Tan, Zhang, Algorithmica, 2007]
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Jena, Germany
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Min-COS-C on (∗, 2)-Matrices
Min-COS-C is equivalent to Induced Disjoint Paths Subgraph
(IDPS).

Induced Disjoint Paths Subgraph (IDPS)
Given: A graph G and a positive integer k .
Question: Can we delete at most k vertices of G such that the
resulting graph is a vertex-disjoint disjoint union of paths?
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Problem Kernel for Min-COS-C on (∗, 2)-Matrices

Problem Kernel:
Given a parameterized problem instance (X , k).
Transform it in polynomial time into an instance (X ′, k ′)
with |X ′| ≤ f (k) and k ′ ≤ k .
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Problem Kernel for Min-COS-C on (∗, 2)-Matrices

Theorem: IDPS with parameter k admits a problem kernel
with O(k2) vertices and O(k2) edges.

Data reduction rules:

1. If a degree-two vertex v has two degree-at-most-two
neighbors u, w with {u, w} /∈ E , remove v from G and
connect u, w by an edge.

2. If a vertex v has more than k + 2 neighbors, then remove v
from G , add v to the solution, and decrease k by one.

37 Michael Dom, Universität Jena: Consecutive Ones Submatrix Problems



Problem Kernel for Min-COS-C on (∗, 2)-Matrices
◮ At most k red vertices.
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Problem Kernel for Min-COS-C on (∗, 2)-Matrices
◮ At most k red vertices.
◮ They have at most k · (k + 2) blue neighbors.
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Problem Kernel for Min-COS-C on (∗, 2)-Matrices
◮ At most k red vertices.
◮ They have at most k · (k + 2) blue neighbors.
◮ At least every third blue vertex must be a neighbor of a red

vertex.
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Problem Kernel for Min-COS-C on (∗, 2)-Matrices
◮ At most k red vertices.
◮ They have at most k · (k + 2) blue neighbors.
◮ At least every third blue vertex must be a neighbor of a red

vertex.

⇒ k + 3 · k · (k + 2) vertices.
⇒ k · (k + 2) + 3 · k · (k + 2) − 1 edges.
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