Approximation and Fixed-Parameter Algorithms for Consecutive Ones Submatrix Problems

Michael Dom, Jiong Guo, and Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Chennai, October 2007

Consecutive Ones Property (C1P)

A 0/1-matrix has the C1P if its columns can be permuted such that in each row the ones form a block.

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:

1	2	3	4	5
1	1			1
1		1		1
1		1	1	

Consecutive Ones Property (C1P)

Example for a matrix having the C1P:

Consecutive Ones Property (C1P)

Examples for matrices not having the C1P:

1	1	0
0	1	1
1	0	1

1	1	0	0
0	1	1	0
0	0	1	1
1	0	0	1

1	1	0	0	0
0	1	1	0	0
0	0	1	1	0
0	0	0	1	1
1	0	0	0	1

1	1	0	0
0	1	1	0
0	1	0	1

1	1	0	0	0	0
0	0	1	1	0	0
0	0	0	0	1	1
1	0	1	0	1	0

Consecutive Ones Property (C1P)

The Consecutive Ones Property. . .

- ...expresses "locality" of the input data.
- ...appears in many applications, e.g.
- in railway system optimization
[Ruf, Schöbel, Discrete Optimization, 2004;
Mecke, Wagner, ESA '04],
- bioinformatics
[Christof, Oswald, Reinelt, IPCO '98;
Lu, Hsu, J. Comp. Biology, 2003].
- ... can be recognized in polynomial time [Booth, Lueker, J. Comput. System Sci., 1976; Meidanis, Porto, Telles, Discrete Appl. Math., 1998; Habib, McConnell, Paul, Viennot, Theor. Comput. Sci., 2000, Hsu, J. Algorithms, 2002; McConnell, SODA '04].
- . . . is subject of current research [Hajiaghayi, Ganjali, Inf. Process. Lett., 2002;
Tan, Zhang, Algorithmica, 2007].

Problem Definition

Min-COS-C (Min-COS-R)

Given: A matrix M and a positive integer k.
Question: Can we delete at most k columns (at most k rows) such that the resulting matrix has the C1P?

Min-COS-C is NP-complete even on $(2,3)$ - and (3, 2)-matrices [Hajiaghayi, Ganjali, Inform. Process. Letters, 2002;
Tan, Zhang, Algorithmica, 2007].
Min-COS-R is NP-complete even on (3, 2)-matrices
[Hajiaghayi, Ganjali, Inform. Process. Letters, 2002].

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(*, 2)$	\bullet No const. approx. 1	
$(*, \Delta)$	\bullet No const. approx. 1	
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, *)$	0.5 -approx 1	
$(\Delta, *)$		

Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(*, 2)$	\bullet No const. approx. 1 \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
$(*, \Delta)$	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot\|M\|^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, *)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.^{1}(\|M\|)\right)$-alg.
$(\Delta, *)$		

[^0]
Problem Overview

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(*, 2)$	\bullet No const. approx. 1 \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
$(*, \Delta)$	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot\|M\|^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, *)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.^{1}(\|M\|)\right)$-alg.
$(\Delta, *)$		

[^1]
Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
& \\
&
\end{aligned}
$$

Theorem: A matrix has the C1P iff it contains none of the shown matrices.
[Tucker, Journal of Combinatorial Theory (B), 1972]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
& \overbrace{\begin{array}{|ccccc|c}
\mathbf{1} & \mathbf{1} & 0 & \cdots & & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & 0 \\
0 & \ldots & \cdots & \mathbf{1} & \mathbf{1} & 0 \\
\hline 0 & \mathbf{1} & & \cdots & & \mathbf{1} \\
\mathbf{1} & & \ldots & \mathbf{1} & 0 & \mathbf{1}
\end{array}}^{p+3}\} p+3 \\
& \overbrace{\begin{array}{|ccccc|c}
\left\lvert\, \begin{array}{cccccc}
\mathbf{1} & \mathbf{1} & 0 & \cdots & \cdots & 0 \\
0 & \mathbf{1} & \mathbf{1} & 0 & \cdots & \\
0 & \cdots & 0 & \mathbf{1} & \mathbf{1} & 0 \\
0 & \mathbf{1} & \cdots & \mathbf{1} & 0 & \mathbf{1}
\end{array}\right. \\
M_{\mathrm{III}_{p},}, p \geq 1
\end{array}}^{p+3}\} p+2 \\
& \\
&
\end{aligned}
$$

Approach: Use a search tree algorithm.
Repeat:

1. Search for a "forbidden submatrix".
2. Branch on which of its columns has to be deleted.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Search Tree Algorithm:

Finite size c of forbidden matrices \Rightarrow search tree of size $O\left(c^{k}\right)$. (Alternatively: Factor-c approximation algorithm.)

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
&
\end{aligned}
$$

A $(*, \Delta)$-matrix can contain

- $M_{l_{p}}$ with unbounded size,
- $M_{\mathrm{II}_{p}}$ with $1 \leq p \leq \Delta-2$,
- $M_{\text {III }_{p}}$ with $1 \leq p \leq \Delta-1$,
- MIV , and M_{V}.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Problem: Matrices $M_{l_{p}}$ of unbounded size can occur.
Idea: First destroy all "small" forbidden submatrices (search tree algorithm), and then see what happens...

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{I_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{I I_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{I I I_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{1_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on $(*, \Delta)$-matrices with the Circ1P.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on $(*, \Delta)$-matrices with the Circ1P.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices
Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{I_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{I_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{I I I_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on $(*, \Delta)$-matrices with the Circ1P.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property (Circ1P).
[Dom, Guo, Niedermeier, TAMC '07]

Components of a matrix:

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
r_{1}	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0
r_{2}	0	$\mathbf{1}$	0	0	0	0
r_{3}	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0
r_{4}	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property (Circ1P).
[Dom, Guo, Niedermeier, TAMC '07]

A 0/1-matrix M has the Circ1P if its columns can be permuted such that in each row the 1 's form a block when M is wrapped around a vertical cylinder.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then every component of M has the circular ones property (Circ1P).
[Dom, Guo, Niedermeier, TAMC '07]

Proof by contraposition:

If a component B of a $(*, \Delta)$-matrix does not have the Circ1P, then it contains one of the submatrices from X.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the Circ1P iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the Circ1P iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Theorem: Let M be a matrix and c_{j} be a column of M. Form the matrix M^{\prime} from M by complementing all rows with a 1 in column c_{j}. Then M has the Circ1P iff M^{\prime} has the C1P.
[Tucker, Pacific Journal of Mathematics, 1971]

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Component B without circular ones property.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Component B without circular ones property. $\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Component B without circular ones property. $\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.
\Rightarrow There is a forbidden submatrix A^{\prime} in B^{\prime}.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Component B without circular ones property. $\Rightarrow \exists$ column c such that B^{\prime} does not have the C1P.
\Rightarrow There is a forbidden submatrix A^{\prime} in B^{\prime}.
\Rightarrow We can always find a submatrix from X in B.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
&
\end{aligned}
$$

Case study 1: A^{\prime} is an M_{IV}, row 2 has been complemented.

Then we can find an M_{v} in B.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

$$
\begin{aligned}
& \begin{array}{llllll}
\hline \mathbf{1} & \mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Case study 2: A^{\prime} is an M_{V}, row 3 has been complemented.

Then we can find an M_{IV} in B.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices
Most complicated case: A^{\prime} is an $M_{1_{p}}$ with $p \geq \Delta$.

Then we can find an $M_{I I I_{1}}$ or an M_{IV} in B.

Min-COS-C / Min-COS-R on $(*, \Delta)$-Matrices

Algorithmic framework for Min-COS-C / Min-COS-R:

1. Destroy the submatrices from

$$
\begin{aligned}
X:= & \left\{M_{\mathrm{I}_{p}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{II}_{p}} \mid 1 \leq p \leq \Delta-2\right\} \\
& \cup\left\{M_{\mathrm{III}} \mid 1 \leq p \leq \Delta-1\right\} \cup\left\{M_{\mathrm{IV}}, M_{\mathrm{V}}\right\} .
\end{aligned}
$$

2. Destroy the remaining $M_{l_{p}}(p \geq \Delta)$.

We show:

- We can find a submatrix from X in polynomial time.
- If a $(*, \Delta)$-matrix M contains none of the matrices in X as a submatrix, then M can be divided into "independent" submatrices that have the "circular ones property (Circ1P)".
- Min-COS-C / Min-COS-R can be solved in polynomial time on $(*, \Delta)$-matrices with the Circ1P.

From Circ1P to C1P

C1P:	1's blockwise after column permutations
Circ1P:	1's blockwise on a cylinder
	after column permutations

(Circ1P/C1P means: Strong Circ1P/strong C1P can be obtained by column permutations.)

From Circ1P to C1P

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

From Circ1P to C1P

We imagine the matrices as wrapped around a vertical cylinder.

Strong Circ1P:

Strong C1P:

Strong C1P =
Strong Circ1P + "cut"

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + column deletions

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + C1P

First consider this task:

strong Circ1P	column deletions	strong Circ1P + strong C1P

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + C1P

First consider this task:

strong Circ1P	column deletions	strong Circ1P + strong C1P

Obs.: Deleting a consecutive set of columns is always optimal.

From Circ1P to C1P

Our task:

strong Circ1P	\longrightarrow
	strong Circ1P + Colum deletions

First consider this task: Easy!!!

strong Circ1P	column deletions	strong Circ1P + strong C1P

We hope: Does "strong Circ1P + C1P" imply "strong C1P"?

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P , then it has also the strong C1P.

Counterexample:

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

From Circ1P to C1P

Conjecture: If a matrix has the strong Circ1P and the C1P, then it has also the strong C1P.

Counterexample:

New conjecture: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P + C1P

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P+ strong C1P

strong Circ1P + C1P

From Circ1P to C1P

To be proven: If a matrix with $\geq 2 \Delta-1$ columns has the strong Circ1P and the C1P, then it has also the strong C1P.

Very helpful:
Theorem: Let M have the strong Circ1P. Then every column permutation that also yields the strong Circ1P can be obtained by a series of circular module reversals.
[Hsu, McConnell, Theor. Comput. Sci., 2003]

strong Circ1P +C 1 P

From Circ1P to C1P

Now to be proven: Let M be a matrix with with $\geq 2 \Delta-1$ columns that has the strong Circ1P and the strong C1P. Reversing an arbitrary circular module of M does not affect these properties.

From Circ1P to C1P

Algorithm for Min-COS-C on matrices with Circ1P:

1. Permute the columns to get the strong Circ1P.
2. Search for a set of consecutive consecutive columns whose deletion yields the strong C1P.
[Dom, Niedermeier, ACiD '07]

Results for Min-COS-C and Min-COS-R

FPT algorithm:

Running time:

$(\mid \text { submatrix } \mid)^{k}$	$\cdot($ search +	"Circ1P \rightarrow C1P" time $)$
$(\Delta+2)^{k}$	$\cdot\left(n^{O(1)}+O(\Delta m n)\right)$	

Approximation algorithm:
Approximation factor: |submatrix|
Running time:
$k \cdot($ search + "Circ1P \rightarrow C1P" time)

Open Question

How can a matrix that has the (strong) Circ1P be modified by deleting a minimum number of 1 -entries such that the resulting matrix has the C1P?

More Open Questions

(1's per col, 1's per row)	Max-COS-C	Min-COS-C
$(3,2)$	0.5 -approx ${ }^{1}$	
$(*, 2)$	\bullet No const. approx. ${ }^{1}$ \bullet W[1]-hard	\bullet No 2,72-approx. \bullet Problem kernel
$(*, \Delta)$	\bullet No const. approx. \bullet W[1]-hard	$\bullet(\Delta+2)$-approx. $\bullet O\left((\Delta+2)^{k} \cdot \Delta^{O(\Delta)} \cdot\|M\|^{O(1)}\right)$-alg.
$(2,3)$	0.8 -approx ${ }^{1}$	
$(2, *)$	0.5 -approx 1	$\bullet 6$-approx $\bullet O\left(6^{k} \cdot\right.$ pol $\left.(\|M\|)\right)$-alg.
$(\Delta, *)$	$?$	$?$

Jena, Germany

Min-COS-C on (*,2)-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.
Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Min-COS-C on (*,2)-Matrices

Min-COS-C is equivalent to Induced Disjoint Paths Subgraph (IDPS).

Induced Disjoint Paths Subgraph (IDPS)

Given: A graph G and a positive integer k.
Question: Can we delete at most k vertices of G such that the resulting graph is a vertex-disjoint disjoint union of paths?

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
0	1	0	1

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

Problem Kernel:
Given a parameterized problem instance (X, k).
Transform it in polynomial time into an instance (X^{\prime}, k^{\prime}) with $\left|X^{\prime}\right| \leq f(k)$ and $k^{\prime} \leq k$.

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

Theorem: IDPS with parameter k admits a problem kernel with $O\left(k^{2}\right)$ vertices and $O\left(k^{2}\right)$ edges.

Data reduction rules:

1. If a degree-two vertex v has two degree-at-most-two neighbors u, w with $\{u, w\} \notin E$, remove v from G and connect u, w by an edge.

2. If a vertex v has more than $k+2$ neighbors, then remove v from G, add v to the solution, and decrease k by one.

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

- At most k red vertices.

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.

Problem Kernel for Min-COS-C on $(*, 2)$-Matrices

- At most k red vertices.
- They have at most $k \cdot(k+2)$ blue neighbors.
- At least every third blue vertex must be a neighbor of a red vertex.

$$
\begin{aligned}
& \Rightarrow k+3 \cdot k \cdot(k+2) \text { vertices. } \\
& \Rightarrow k \cdot(k+2)+3 \cdot k \cdot(k+2)-1 \text { edges. }
\end{aligned}
$$

[^0]: ${ }^{1}$ [Tan, Zhang, Algorithmica, 2007]

[^1]: ${ }^{1}$ [Tan, Zhang, Algorithmica, 2007]

