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Structure of the Talk

• Introduction: Leaf Roots
and Leaf Root Problems

• Forbidden subgraph characterization
for 3-LEAF ROOT

• Fixed-parameter tractability
of CLOSEST3-LEAF ROOT
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k-Roots andk-Powers
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k-Leaf Roots
Given a graphG = (V, E). A k-leaf root of G is a
treeT with the following properties:

1. The leaves ofT are the elements ofV

2. dT (u, v) ≤ k ⇔ (u, v) ∈ E, wheredT denotes
the distance betweenu andv in T
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Problem: k-L EAF ROOT
k-LEAF ROOT (LRk)
Instance: A graphG = (V, E).
Question: Is there ak-leaf root ofG?

Complexity ofk-LEAF ROOT:

• O(|V | + |E|) for k = 3

• O(|V |3) for k = 4a

• unknown fork ≥ 5

aN. Nishimura, P. Ragde, D. M. Thilikos,J. Algorithms, 2002
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Problem: CLOSEST k-L EAF ROOT
CLOSESTk-LEAF ROOT (CLRk)
Instance: A graphG = (V, E) and a
nonnegative integerl.
Question: Is there a graphG′ such thatG′

has ak-leaf root and thatG′ andG differ by
at mostl edges:
|(E(G′) \ E(G)) ∪ (E(G) \ E(G′))| ≤ l

Variations:
• CLRk EDGE DELETION

• CLRk EDGE INSERTION

• CLRk VERTEX DELETION
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Complexity
Complexity of closestk-leaf root problems.

k = 2 k ≥ 3

“Edge editing” NP-completea NP-completeb

Edge deletion NP-completec NP-completeb

Edge insertion P NP-completeb

Vertex deletion NP-completed NP-completed

aM. Křivánek and J. Moŕavek,Acta Informatica, 1986
bM. Dom, J. Guo, F. Ḧuffner, R. Niedermeier,15th ISAAC, 2004
cA. Natanzon,Master Thesis, 1999
dJ. M. Lewis and M. Yannakakis,JCSS, 1980
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Structure of the Talk

• Introduction: Leaf Roots
and Leaf Root Problems

• Forbidden subgraph characterization
for 3-L EAF ROOT

• Fixed-parameter tractability
of CLOSEST3-LEAF ROOT
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Forbidden Subgraph Charact.

• Graph propertyΠ

• SetF of forbidden subgraphs

• G ∈ Π
⇔
G does not contain any of the forbidden
subgraphs as induced subgraph
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Critical Cliques

A critical cliquea of a graphG is a cliqueK where
the vertices ofK all have the same set of neighbors
in G \ K, andK is maximal under this property.

aIntroduced by G.-H. Lin, P. E. Kearney, T. Jiang,11th ISAAC, 2000
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Forbidden Subgraphs (1)
Lemma. If a graph G has a 3-leaf root, then every
clique in G consists of at most two critical cliques.

G
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Forbidden Subgraphs (2)
Lemma. For a graph G, the following statements are
equivalent:

(1) There is a clique K in G that consists of at least
three critical cliques.

(2) G contains a bull, dart, gem, house or W4 as
induced subgraph.

bull dart gem house W4
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Forbidden Subgraphs (3)
Proof.
(1 ⇒ 2): Let u, v andw be vertices of the same clique
that belong to three different critical cliques.

(a) There is a vertex (x) in G which is connected to
exactly one of the three verticesu, v or w, or

(b) there is no such vertex inG

(a) (b)u v

w

x

x

y

y

u

v w

(2 ⇒ 1): Easy to see.
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Forbidden Subgraphs (4)
The following lemma is well-known and easy to see:

Lemma. If a graph G has a k-leaf root for any k,
then G is chordal.

(A graphG is chordal, iff it contains no induced chordless cycle.)

chordal not chordal
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Forbidden Subgraphs (4)
The following lemma is well-known and easy to see:

Lemma. If a graph G has a k-leaf root for any k,
then G is chordal.

Summary of the lemmas:

• 3-leaf root⇒ ≤ 2 crit. cliques per max. clique
• 3-leaf root⇒ chordal
• chordal and≤ 2 crit. cliques per max. clique⇒

no bull, dart or gem
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Forbidden Subgraphs (5)
Therefore, one direction of this theorem is clear:

Theorem. For a graph G, the following statements
are equivalent:

(1) G has a 3-leaf root.

(2) G is chordal and contains no bull,
dart, or gem as induced subgraph.

We still have to show:(2)⇒ (1).

We do this constructively by showing how to
construct the 3-leaf root of a chordal, bull-, dart-, and
gem-free graph.
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The Critical Clique Graph
Given a graphG. The critical clique graphCC(G) has
the critical cliques ofG as nodes, and two nodes are
connected iff the corresponding critical cliques form
a larger clique inG.

G
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How to construct a 3-leaf root
We need some more lemmas:

• Lemma. A graph G is chordal iff CC(G) is
chordal.

• Lemma. Every clique of a graph G consists of at
most two critical cliques iff CC(G) contains no
cliques of size > 2 (i.e. no triangles).

• Corollary. If a graph G is chordal, bull-, dart-,
and gem-free, then CC(G) is a forest.
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How to construct a 3-leaf root

G

CC(G)

3-leaf root
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Structure of the Talk

• Introduction: Leaf Roots
and Leaf Root Problems

• Forbidden subgraph characterization
for 3-LEAF ROOT

• Fixed-parameter tractability
of CLOSEST 3-LEAF ROOT
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Fixed-Parameter Tractability
Definition of Fixed-Parameter Tractability:

• Problem instance(x, l) with |x| = n

• Runtimef(l) · nO(1) (instead off(n))

We show fixed-parameter tractability with respect to
the number of editing operationsl for all CLRk
variations:

• CLR3 EDGE DELETION,
• CLR3 EDGE INSERTIONand
• CLR3 (“Edge Editing”).

(For CLR3 VERTEX DELETION see M. Dom, J. Guo,

F. Hüffner, R. Niedermeier,Proc. 15th ISAAC, 2004.)
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Search Trees

f1(l)

f2(l)
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Fixed-Parameter Algorithms (1)

From the previous section, we know:
If a graphG has a 3-leaf root, thenCC(G) is a forest.

To solve CLR3, modify the given graph so that its
critical clique graph becomes a forest!
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Fixed-Parameter Algorithms (2)
Basic scheme for our FPT-algorithms:

(1) EditG to get rid of the forbidden subgraphs bull,
dart, gem, house, andW4.
Runtimea: O(cl · |V |d)
(c, d: constants,l: number of allowed edge
modifications.)
After step (1),CC(G) contains no triangles.

(2) EditG to make it chordal.
After step (2),CC(G) is a forest.

aL. Cai, Information Processing Letters, 1996
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CLR3 EDGE DELETION
Difficulty: How can we makeG chordal?

• Operate onCC(G) instead ofG:
Lemma. There is always an optimal solution that
does not delete any edges within a critical clique
and that deletes either all or no edges between
two critical cliques.
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CLR3 EDGE DELETION
Difficulty: How can we makeG chordal?

• Operate onCC(G) instead ofG:
Lemma. There is always an optimal solution that
does not delete any edges within a critical clique
and that deletes either all or no edges between
two critical cliques.

“Collapsing” triangles.
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CLR3 EDGE DELETION
Difficulty: How can we makeG chordal?

• Operate onCC(G) instead ofG:
Lemma. There is always an optimal solution that
does not delete any edges within a critical clique
and that deletes either all or no edges between
two critical cliques.

• After step (1)CC(G) contains no triangles.
⇒ The remaining cycles inCC(G) cannot

“collapse”.
⇒ At least one edge of every cycle inCC(G) has

to be deleted.
⇒ Step (2) is finding a maximum spanning tree

on the critical clique graph.
Error Compensation in Leaf Root Problems – p.24/28



CLR3 EDGE I NSERTION
Main idea for step (2): Every cycle of length≥ 4 in
CC(G) has to be triangulated.

A minimal triangulation of a cycle withn edges
consists ofn − 3 chords.a

⇒ If only l edge insertions are allowed, there cannot
be a chordless cycle of length more thanl + 3.

⇒ (l+3)·(l+2)
2 -branching.

⇒ Runtime:O(l2l · |V | · |E|).

aH. Kaplan, R. Shamir, R. E. Tarjan,SIAM J. Computing, 1999
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CLR3 (“Edge Editing”)

Cycles of length> l + 3 in the critical clique graph
cannot be destroyed only with edge insertions.

⇒ We first eliminate all cycles of length≤ l + 3,
which leads to al + 3 + (l+3)·(l+2)

2 -branching.

Thereafter, we eliminate the bigger cycles only with
edge deletions (maximum spanning tree).

Runtime:O(l2l · |V | · |E|)
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Results fork = 4

• Forbidden subgraphs in the critical clique graph:

F1 F2 F3 F4

F5 F6 F7 F8

• FPT-algorithms for all variants of CLR4.
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Open questions
• Generalization to CLOSESTk-LEAF ROOT

for k > 4:
• Can graphs that have ak-leaf root be

recognized in polynomial time?
• Is there a useful characterization by a small

set of forbidden subgraphs?
• Extension to the closely related CLOSEST

PHYLOGENETIC k-TH ROOT, where all inner
nodes of the leaf root (then called “phylogenetic
root”) must have degree≥ 3?

• How small can the combinatorial explosion for
CLR3, CLR4 and their variants in the parameterl
(number of modifications) be made?
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