Extending the Tractability Border for Closest Leaf Powers

Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier

Friedrich-Schiller-Universität Jena

Structure of the Talk

- Introduction and Motivation
- Some Basic Concepts and Ideas
- A Fixed-Parameter Algorithm for Closest 4-Leaf Power

Leaf Roots and Leaf Powers

Definition

A graph $G=\left(V, E_{G}\right)$ is a k-leaf power if there is a tree $T=\left(V \cup S, E_{T}\right)$ with leaf set V and

$$
\forall u, v \in V: \operatorname{dist}_{T} \leq k \Leftrightarrow\{u, v\} \in E_{G} .
$$

T is called a k-leaf root of G.

Leaf Roots and Leaf Powers

3-leaf root of G

Definition

A graph $G=\left(V, E_{G}\right)$ is a k-leaf power if there is a tree $T=\left(V \cup S, E_{T}\right)$ with leaf set V and

$$
\forall u, v \in V: \operatorname{dist}_{T} \leq k \Leftrightarrow\{u, v\} \in E_{G} .
$$

T is called a k-leaf root of G.

Leaf Power Recognition / Computing Leaf Roots

k-Leaf Power
Input: A graph G.
Question: Is G a k-leaf power (has G a k-leaf root)?

Complexity of k-Leaf Power:

- $O(|V|+|E|)$ for $k=2$ and $k=3$
- $O\left(|V|^{3}\right)$ for $k=4$
[N. Nishimura, P. Ragde, D. M. Thilikos, J. Algorithms, 2002]
- unknown for $k \geq 5$

A Graph Modification Problem

What to do if a given graph has no k-tree root?

A Graph Modification Problem

What to do if a given graph has no k-tree root?

A Graph Modification Problem

What to do if a given graph has no k-tree root?

A Graph Modification Problem

Closest k-Leaf Power (CLPk)
Input: A graph G, a natural number ℓ.
Question: Is there a k-leaf power G^{\prime} such that G^{\prime} and G differ by at most ℓ edges?

Complexity of Closest k-Leaf Power:

- NP-complete for $k=2$
[M. Křivánek and J. Morávek, Acta Informatica, 1986]
- NP-complete for every $k \geq 3$
[M. Dom, J. Guo, F. Hüffner, R. Niedermeier, 15th ISAAC, 2004]
- No approximation is known for $k \geq 3$.

Structure of the Talk

- Introduction and Motivation
- Some Basic Concepts and Ideas
- A Fixed-Parameter Algorithm for Closest 4-Leaf Power

Fixed-Parameter Tractability

Definition of Fixed-Parameter Tractability (FPT):

- Problem instance (G, ℓ)
- Runtime $f(\ell) \cdot|G|^{O(1)}$
- CLP2 and CLP3 are fixed-parameter tractable with respect to the parameter ℓ.
[J. Gramm, J. Guo, F. Hüffner, R. Niedermeier, Theory of Computing Systems, 2005]
[M. Dom, J. Guo, F. Hüffner, R. Niedermeier, 15th ISAAC, 2004]
- Now we will show fixed-parameter tractability with respect to the number of editing operations ℓ for CLP4.

Forbidden Subgraph Characterization

We will make use of a forbidden subgraph characterization:

- Graph property Π ("is k-leaf power")
- Set \mathcal{F} of forbidden subgraphs
- $G \in \Pi$
\Leftrightarrow
G does not contain any of the subgraphs in \mathcal{F} as induced subgraph

Search Tree Algorithms

Search tree algorithm to transform a graph G into a Π-graph:

\mathcal{F} finite \Rightarrow fixed-parameter algorithm (running time $f_{3}(\ell) \cdot n^{O(1)}$).

Critical Cliques

A critical clique of a graph G is a clique K where the vertices of K all have the same set of neighbors in $G \backslash K$, and K is maximal under this property.
[G.-H. Lin, P. E. Kearney, T. Jiang, 11th ISAAC, 2000]

The Critical Clique Graph

Given a graph G. The critical clique graph $C C(G)$ has the critical cliques of G as nodes, and two nodes are connected iff the corresponding critical cliques form a larger clique in G.

Simplification of the Graph

Operate on $\mathrm{CC}(G)$ instead of G :
Lemma
There is always an optimal solution that does not delete any edges within a critical clique and that deletes or inserts either all or no edges between two critical cliques.

Forbidden Subgraphs for Leaf Powers

Lemma

If a graph G has a k-leaf root for any k, then G is chordal.
(A graph G is chordal, iff it contains no induced cycle of length at least four.)

Moreover, if a graph G is chordal, then its critical clique graph $\operatorname{CC}(G)$ is chordal.

However:

- Induced cycles are not the only forbidden subgraphs.
- The set of forbidden subgraphs $C_{4}, C_{5}, C_{6}, \ldots$ is not finite.

Structure of the Talk

- Introduction and Motivation
- Some Basic Concepts and Ideas
- A Fixed-Parameter Algorithm for Closest 4-Leaf Power

Forbidden Subgraphs for 4-Leaf Powers

A graph G is a 4-leaf power iff its critical clique graph $\operatorname{CC}(G)$ is chordal and contains no graph from the set $\mathcal{F}:=\left\{F_{1}, \ldots, F_{8}\right\}$ as an induced subgraph.

Algorithm for Closest 4-Leaf Power

1. Destroy all forbidden subgraphs F_{1}, \ldots, F_{8} in $\mathrm{CC}(G)$ (\Rightarrow fixed-parameter search tree algorithm).
2. While there is a "small" induced cycle (length $\leq \ell+3$) in $C C(G)$:

- delete an edge or
- insert an edge
(\Rightarrow fixed-parameter search tree algorithm)

3. But: How to destroy "long" induced cycles?

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

A Closer Look at \mathcal{F}-Free Critical Clique Graphs

Delete a minimum weight set of edges between the "key (at most seven) red edges at a "key point". points"...

Bounding the Number of "Key Points" (1)

Build a "Pseudo Steiner Root" S for the \mathcal{F}-free critical clique graph CC(G):

- $\operatorname{dist}_{C C(G)}(U, V)=1 \Leftrightarrow \operatorname{dist}_{S}(U, V) \leq 2$.
- The nodes of a cycle in S induce at least one cycle in CC($G)$.
- Each "key point" in CC(G) corresponds to a node of degree at least 3 in S.

Bounding the Number of "Key Points" (2)

Theorem
Every graph with minimum vertex degree at least 3 contains a cycle of length at most $2 \log n+1$.
[Erdős and Pósa]

Running Time of the Algorithm

Branching of the search tree algorithm:

- $2 \log n+1$ "key points"
- Eight possibilities for each "key point"

Running time: $(48 \cdot O(\log n)+24)^{\ell} \cdot n^{O(1)}=c^{\ell} \cdot(\ell \log \ell)^{\ell} \cdot n^{O(1)}$
Theorem
Closest 4-Leaf Power is fixed-parameter tractable with respect to the parameter ℓ (number of modifications).

Open Questions

- Generalization to Closest k-Leaf Power for $k>4$:
- Can graphs that have a k-leaf root be recognized in polynomial time?
- Is there a useful characterization by a small set of forbidden subgraphs?
- Extension to the closely related problem Closest Phylogenetic k-th Power?
- How small can the combinatorial explosion for CLP3, CLP4 and their variants in the parameter ℓ (number of modifications) be made?

